Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1117 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- mteb
|
8 |
+
model-index:
|
9 |
+
- name: stella-mrl-large-zh-v3.5-1792d
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: C-MTEB/AFQMC
|
15 |
+
name: MTEB AFQMC
|
16 |
+
config: default
|
17 |
+
split: validation
|
18 |
+
revision: None
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 54.33822814973567
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 58.85457316132848
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 57.57048145477383
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 58.854593263425095
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 57.55884028558309
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 58.84474216217465
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: C-MTEB/ATEC
|
36 |
+
name: MTEB ATEC
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: None
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 54.219652875381875
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 58.079506691583546
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 61.646366330471736
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 58.07951006894859
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 61.64460832085762
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 58.08054699349972
|
53 |
+
- task:
|
54 |
+
type: Classification
|
55 |
+
dataset:
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
config: zh
|
59 |
+
split: test
|
60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
+
metrics:
|
62 |
+
- type: accuracy
|
63 |
+
value: 46.593999999999994
|
64 |
+
- type: f1
|
65 |
+
value: 44.73150848183217
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
type: C-MTEB/BQ
|
70 |
+
name: MTEB BQ
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
revision: None
|
74 |
+
metrics:
|
75 |
+
- type: cos_sim_pearson
|
76 |
+
value: 69.16841007040091
|
77 |
+
- type: cos_sim_spearman
|
78 |
+
value: 71.04760904227217
|
79 |
+
- type: euclidean_pearson
|
80 |
+
value: 69.95126084376611
|
81 |
+
- type: euclidean_spearman
|
82 |
+
value: 71.04760904184589
|
83 |
+
- type: manhattan_pearson
|
84 |
+
value: 69.92512024129407
|
85 |
+
- type: manhattan_spearman
|
86 |
+
value: 71.02613161257672
|
87 |
+
- task:
|
88 |
+
type: Clustering
|
89 |
+
dataset:
|
90 |
+
type: C-MTEB/CLSClusteringP2P
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: None
|
95 |
+
metrics:
|
96 |
+
- type: v_measure
|
97 |
+
value: 43.032332399653306
|
98 |
+
- task:
|
99 |
+
type: Clustering
|
100 |
+
dataset:
|
101 |
+
type: C-MTEB/CLSClusteringS2S
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
config: default
|
104 |
+
split: test
|
105 |
+
revision: None
|
106 |
+
metrics:
|
107 |
+
- type: v_measure
|
108 |
+
value: 40.41603958793544
|
109 |
+
- task:
|
110 |
+
type: Reranking
|
111 |
+
dataset:
|
112 |
+
type: C-MTEB/CMedQAv1-reranking
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
config: default
|
115 |
+
split: test
|
116 |
+
revision: None
|
117 |
+
metrics:
|
118 |
+
- type: map
|
119 |
+
value: 89.33487924447584
|
120 |
+
- type: mrr
|
121 |
+
value: 91.34623015873017
|
122 |
+
- task:
|
123 |
+
type: Reranking
|
124 |
+
dataset:
|
125 |
+
type: C-MTEB/CMedQAv2-reranking
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: None
|
130 |
+
metrics:
|
131 |
+
- type: map
|
132 |
+
value: 89.17795270698021
|
133 |
+
- type: mrr
|
134 |
+
value: 91.0956746031746
|
135 |
+
- task:
|
136 |
+
type: Retrieval
|
137 |
+
dataset:
|
138 |
+
type: C-MTEB/CmedqaRetrieval
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
config: default
|
141 |
+
split: dev
|
142 |
+
revision: None
|
143 |
+
metrics:
|
144 |
+
- type: map_at_1
|
145 |
+
value: 26.809
|
146 |
+
- type: map_at_10
|
147 |
+
value: 39.906000000000006
|
148 |
+
- type: map_at_100
|
149 |
+
value: 41.858000000000004
|
150 |
+
- type: map_at_1000
|
151 |
+
value: 41.954
|
152 |
+
- type: map_at_3
|
153 |
+
value: 35.435
|
154 |
+
- type: map_at_5
|
155 |
+
value: 37.978
|
156 |
+
- type: mrr_at_1
|
157 |
+
value: 40.660000000000004
|
158 |
+
- type: mrr_at_10
|
159 |
+
value: 48.787000000000006
|
160 |
+
- type: mrr_at_100
|
161 |
+
value: 49.796
|
162 |
+
- type: mrr_at_1000
|
163 |
+
value: 49.832
|
164 |
+
- type: mrr_at_3
|
165 |
+
value: 46.166000000000004
|
166 |
+
- type: mrr_at_5
|
167 |
+
value: 47.675
|
168 |
+
- type: ndcg_at_1
|
169 |
+
value: 40.660000000000004
|
170 |
+
- type: ndcg_at_10
|
171 |
+
value: 46.614
|
172 |
+
- type: ndcg_at_100
|
173 |
+
value: 54.037
|
174 |
+
- type: ndcg_at_1000
|
175 |
+
value: 55.654
|
176 |
+
- type: ndcg_at_3
|
177 |
+
value: 41.032000000000004
|
178 |
+
- type: ndcg_at_5
|
179 |
+
value: 43.464999999999996
|
180 |
+
- type: precision_at_1
|
181 |
+
value: 40.660000000000004
|
182 |
+
- type: precision_at_10
|
183 |
+
value: 10.35
|
184 |
+
- type: precision_at_100
|
185 |
+
value: 1.6340000000000001
|
186 |
+
- type: precision_at_1000
|
187 |
+
value: 0.184
|
188 |
+
- type: precision_at_3
|
189 |
+
value: 23.122
|
190 |
+
- type: precision_at_5
|
191 |
+
value: 16.944
|
192 |
+
- type: recall_at_1
|
193 |
+
value: 26.809
|
194 |
+
- type: recall_at_10
|
195 |
+
value: 57.474000000000004
|
196 |
+
- type: recall_at_100
|
197 |
+
value: 87.976
|
198 |
+
- type: recall_at_1000
|
199 |
+
value: 98.74199999999999
|
200 |
+
- type: recall_at_3
|
201 |
+
value: 40.819
|
202 |
+
- type: recall_at_5
|
203 |
+
value: 48.175000000000004
|
204 |
+
- task:
|
205 |
+
type: PairClassification
|
206 |
+
dataset:
|
207 |
+
type: C-MTEB/CMNLI
|
208 |
+
name: MTEB Cmnli
|
209 |
+
config: default
|
210 |
+
split: validation
|
211 |
+
revision: None
|
212 |
+
metrics:
|
213 |
+
- type: cos_sim_accuracy
|
214 |
+
value: 83.4996993385448
|
215 |
+
- type: cos_sim_ap
|
216 |
+
value: 90.66238348446467
|
217 |
+
- type: cos_sim_f1
|
218 |
+
value: 84.39077936333699
|
219 |
+
- type: cos_sim_precision
|
220 |
+
value: 79.53651975998345
|
221 |
+
- type: cos_sim_recall
|
222 |
+
value: 89.87608136544307
|
223 |
+
- type: dot_accuracy
|
224 |
+
value: 83.4996993385448
|
225 |
+
- type: dot_ap
|
226 |
+
value: 90.64660919236363
|
227 |
+
- type: dot_f1
|
228 |
+
value: 84.39077936333699
|
229 |
+
- type: dot_precision
|
230 |
+
value: 79.53651975998345
|
231 |
+
- type: dot_recall
|
232 |
+
value: 89.87608136544307
|
233 |
+
- type: euclidean_accuracy
|
234 |
+
value: 83.4996993385448
|
235 |
+
- type: euclidean_ap
|
236 |
+
value: 90.66238269557765
|
237 |
+
- type: euclidean_f1
|
238 |
+
value: 84.39077936333699
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 79.53651975998345
|
241 |
+
- type: euclidean_recall
|
242 |
+
value: 89.87608136544307
|
243 |
+
- type: manhattan_accuracy
|
244 |
+
value: 83.35538184004811
|
245 |
+
- type: manhattan_ap
|
246 |
+
value: 90.6446013420276
|
247 |
+
- type: manhattan_f1
|
248 |
+
value: 84.37465196569775
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 80.5614632071459
|
251 |
+
- type: manhattan_recall
|
252 |
+
value: 88.56675239653963
|
253 |
+
- type: max_accuracy
|
254 |
+
value: 83.4996993385448
|
255 |
+
- type: max_ap
|
256 |
+
value: 90.66238348446467
|
257 |
+
- type: max_f1
|
258 |
+
value: 84.39077936333699
|
259 |
+
- task:
|
260 |
+
type: Retrieval
|
261 |
+
dataset:
|
262 |
+
type: C-MTEB/CovidRetrieval
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
config: default
|
265 |
+
split: dev
|
266 |
+
revision: None
|
267 |
+
metrics:
|
268 |
+
- type: map_at_1
|
269 |
+
value: 68.967
|
270 |
+
- type: map_at_10
|
271 |
+
value: 77.95299999999999
|
272 |
+
- type: map_at_100
|
273 |
+
value: 78.213
|
274 |
+
- type: map_at_1000
|
275 |
+
value: 78.21900000000001
|
276 |
+
- type: map_at_3
|
277 |
+
value: 76.30799999999999
|
278 |
+
- type: map_at_5
|
279 |
+
value: 77.316
|
280 |
+
- type: mrr_at_1
|
281 |
+
value: 69.125
|
282 |
+
- type: mrr_at_10
|
283 |
+
value: 77.886
|
284 |
+
- type: mrr_at_100
|
285 |
+
value: 78.141
|
286 |
+
- type: mrr_at_1000
|
287 |
+
value: 78.147
|
288 |
+
- type: mrr_at_3
|
289 |
+
value: 76.291
|
290 |
+
- type: mrr_at_5
|
291 |
+
value: 77.29700000000001
|
292 |
+
- type: ndcg_at_1
|
293 |
+
value: 69.231
|
294 |
+
- type: ndcg_at_10
|
295 |
+
value: 81.867
|
296 |
+
- type: ndcg_at_100
|
297 |
+
value: 82.982
|
298 |
+
- type: ndcg_at_1000
|
299 |
+
value: 83.12
|
300 |
+
- type: ndcg_at_3
|
301 |
+
value: 78.592
|
302 |
+
- type: ndcg_at_5
|
303 |
+
value: 80.39
|
304 |
+
- type: precision_at_1
|
305 |
+
value: 69.231
|
306 |
+
- type: precision_at_10
|
307 |
+
value: 9.494
|
308 |
+
- type: precision_at_100
|
309 |
+
value: 0.9990000000000001
|
310 |
+
- type: precision_at_1000
|
311 |
+
value: 0.101
|
312 |
+
- type: precision_at_3
|
313 |
+
value: 28.591
|
314 |
+
- type: precision_at_5
|
315 |
+
value: 18.061
|
316 |
+
- type: recall_at_1
|
317 |
+
value: 68.967
|
318 |
+
- type: recall_at_10
|
319 |
+
value: 93.941
|
320 |
+
- type: recall_at_100
|
321 |
+
value: 98.84100000000001
|
322 |
+
- type: recall_at_1000
|
323 |
+
value: 99.895
|
324 |
+
- type: recall_at_3
|
325 |
+
value: 85.142
|
326 |
+
- type: recall_at_5
|
327 |
+
value: 89.46300000000001
|
328 |
+
- task:
|
329 |
+
type: Retrieval
|
330 |
+
dataset:
|
331 |
+
type: C-MTEB/DuRetrieval
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
config: default
|
334 |
+
split: dev
|
335 |
+
revision: None
|
336 |
+
metrics:
|
337 |
+
- type: map_at_1
|
338 |
+
value: 25.824
|
339 |
+
- type: map_at_10
|
340 |
+
value: 79.396
|
341 |
+
- type: map_at_100
|
342 |
+
value: 82.253
|
343 |
+
- type: map_at_1000
|
344 |
+
value: 82.295
|
345 |
+
- type: map_at_3
|
346 |
+
value: 54.83
|
347 |
+
- type: map_at_5
|
348 |
+
value: 69.536
|
349 |
+
- type: mrr_at_1
|
350 |
+
value: 89.7
|
351 |
+
- type: mrr_at_10
|
352 |
+
value: 92.929
|
353 |
+
- type: mrr_at_100
|
354 |
+
value: 93.013
|
355 |
+
- type: mrr_at_1000
|
356 |
+
value: 93.015
|
357 |
+
- type: mrr_at_3
|
358 |
+
value: 92.658
|
359 |
+
- type: mrr_at_5
|
360 |
+
value: 92.841
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 89.7
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 86.797
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 89.652
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 90.047
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 85.651
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 84.747
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 89.7
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 41.61
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 4.788
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.488
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 76.833
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 65.14
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 25.824
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 87.896
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 97.221
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 99.29599999999999
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 57.178
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 74.348
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: C-MTEB/EcomRetrieval
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
config: default
|
403 |
+
split: dev
|
404 |
+
revision: None
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 52.5
|
408 |
+
- type: map_at_10
|
409 |
+
value: 63.04
|
410 |
+
- type: map_at_100
|
411 |
+
value: 63.548
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 63.56
|
414 |
+
- type: map_at_3
|
415 |
+
value: 60.483
|
416 |
+
- type: map_at_5
|
417 |
+
value: 62.22800000000001
|
418 |
+
- type: mrr_at_1
|
419 |
+
value: 52.5
|
420 |
+
- type: mrr_at_10
|
421 |
+
value: 63.04
|
422 |
+
- type: mrr_at_100
|
423 |
+
value: 63.548
|
424 |
+
- type: mrr_at_1000
|
425 |
+
value: 63.56
|
426 |
+
- type: mrr_at_3
|
427 |
+
value: 60.483
|
428 |
+
- type: mrr_at_5
|
429 |
+
value: 62.22800000000001
|
430 |
+
- type: ndcg_at_1
|
431 |
+
value: 52.5
|
432 |
+
- type: ndcg_at_10
|
433 |
+
value: 68.099
|
434 |
+
- type: ndcg_at_100
|
435 |
+
value: 70.48400000000001
|
436 |
+
- type: ndcg_at_1000
|
437 |
+
value: 70.769
|
438 |
+
- type: ndcg_at_3
|
439 |
+
value: 63.01
|
440 |
+
- type: ndcg_at_5
|
441 |
+
value: 66.148
|
442 |
+
- type: precision_at_1
|
443 |
+
value: 52.5
|
444 |
+
- type: precision_at_10
|
445 |
+
value: 8.39
|
446 |
+
- type: precision_at_100
|
447 |
+
value: 0.9490000000000001
|
448 |
+
- type: precision_at_1000
|
449 |
+
value: 0.097
|
450 |
+
- type: precision_at_3
|
451 |
+
value: 23.433
|
452 |
+
- type: precision_at_5
|
453 |
+
value: 15.58
|
454 |
+
- type: recall_at_1
|
455 |
+
value: 52.5
|
456 |
+
- type: recall_at_10
|
457 |
+
value: 83.89999999999999
|
458 |
+
- type: recall_at_100
|
459 |
+
value: 94.89999999999999
|
460 |
+
- type: recall_at_1000
|
461 |
+
value: 97.1
|
462 |
+
- type: recall_at_3
|
463 |
+
value: 70.3
|
464 |
+
- type: recall_at_5
|
465 |
+
value: 77.9
|
466 |
+
- task:
|
467 |
+
type: Classification
|
468 |
+
dataset:
|
469 |
+
type: C-MTEB/IFlyTek-classification
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
config: default
|
472 |
+
split: validation
|
473 |
+
revision: None
|
474 |
+
metrics:
|
475 |
+
- type: accuracy
|
476 |
+
value: 50.742593305117346
|
477 |
+
- type: f1
|
478 |
+
value: 38.7451988564002
|
479 |
+
- task:
|
480 |
+
type: Classification
|
481 |
+
dataset:
|
482 |
+
type: C-MTEB/JDReview-classification
|
483 |
+
name: MTEB JDReview
|
484 |
+
config: default
|
485 |
+
split: test
|
486 |
+
revision: None
|
487 |
+
metrics:
|
488 |
+
- type: accuracy
|
489 |
+
value: 86.09756097560977
|
490 |
+
- type: ap
|
491 |
+
value: 54.39255221143281
|
492 |
+
- type: f1
|
493 |
+
value: 80.8326851537251
|
494 |
+
- task:
|
495 |
+
type: STS
|
496 |
+
dataset:
|
497 |
+
type: C-MTEB/LCQMC
|
498 |
+
name: MTEB LCQMC
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: None
|
502 |
+
metrics:
|
503 |
+
- type: cos_sim_pearson
|
504 |
+
value: 72.32408066246728
|
505 |
+
- type: cos_sim_spearman
|
506 |
+
value: 78.25773378380241
|
507 |
+
- type: euclidean_pearson
|
508 |
+
value: 77.87824677060661
|
509 |
+
- type: euclidean_spearman
|
510 |
+
value: 78.25773599854358
|
511 |
+
- type: manhattan_pearson
|
512 |
+
value: 77.86648277798515
|
513 |
+
- type: manhattan_spearman
|
514 |
+
value: 78.24642917155661
|
515 |
+
- task:
|
516 |
+
type: Reranking
|
517 |
+
dataset:
|
518 |
+
type: C-MTEB/Mmarco-reranking
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
config: default
|
521 |
+
split: dev
|
522 |
+
revision: None
|
523 |
+
metrics:
|
524 |
+
- type: map
|
525 |
+
value: 28.846601097874608
|
526 |
+
- type: mrr
|
527 |
+
value: 27.902777777777775
|
528 |
+
- task:
|
529 |
+
type: Retrieval
|
530 |
+
dataset:
|
531 |
+
type: C-MTEB/MMarcoRetrieval
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
config: default
|
534 |
+
split: dev
|
535 |
+
revision: None
|
536 |
+
metrics:
|
537 |
+
- type: map_at_1
|
538 |
+
value: 66.533
|
539 |
+
- type: map_at_10
|
540 |
+
value: 75.58399999999999
|
541 |
+
- type: map_at_100
|
542 |
+
value: 75.91
|
543 |
+
- type: map_at_1000
|
544 |
+
value: 75.921
|
545 |
+
- type: map_at_3
|
546 |
+
value: 73.847
|
547 |
+
- type: map_at_5
|
548 |
+
value: 74.929
|
549 |
+
- type: mrr_at_1
|
550 |
+
value: 68.854
|
551 |
+
- type: mrr_at_10
|
552 |
+
value: 76.20700000000001
|
553 |
+
- type: mrr_at_100
|
554 |
+
value: 76.498
|
555 |
+
- type: mrr_at_1000
|
556 |
+
value: 76.508
|
557 |
+
- type: mrr_at_3
|
558 |
+
value: 74.71600000000001
|
559 |
+
- type: mrr_at_5
|
560 |
+
value: 75.653
|
561 |
+
- type: ndcg_at_1
|
562 |
+
value: 68.854
|
563 |
+
- type: ndcg_at_10
|
564 |
+
value: 79.209
|
565 |
+
- type: ndcg_at_100
|
566 |
+
value: 80.67
|
567 |
+
- type: ndcg_at_1000
|
568 |
+
value: 80.95
|
569 |
+
- type: ndcg_at_3
|
570 |
+
value: 75.923
|
571 |
+
- type: ndcg_at_5
|
572 |
+
value: 77.74799999999999
|
573 |
+
- type: precision_at_1
|
574 |
+
value: 68.854
|
575 |
+
- type: precision_at_10
|
576 |
+
value: 9.547
|
577 |
+
- type: precision_at_100
|
578 |
+
value: 1.027
|
579 |
+
- type: precision_at_1000
|
580 |
+
value: 0.105
|
581 |
+
- type: precision_at_3
|
582 |
+
value: 28.582
|
583 |
+
- type: precision_at_5
|
584 |
+
value: 18.112000000000002
|
585 |
+
- type: recall_at_1
|
586 |
+
value: 66.533
|
587 |
+
- type: recall_at_10
|
588 |
+
value: 89.736
|
589 |
+
- type: recall_at_100
|
590 |
+
value: 96.34
|
591 |
+
- type: recall_at_1000
|
592 |
+
value: 98.52
|
593 |
+
- type: recall_at_3
|
594 |
+
value: 81.047
|
595 |
+
- type: recall_at_5
|
596 |
+
value: 85.38900000000001
|
597 |
+
- task:
|
598 |
+
type: Classification
|
599 |
+
dataset:
|
600 |
+
type: mteb/amazon_massive_intent
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
config: zh-CN
|
603 |
+
split: test
|
604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
+
metrics:
|
606 |
+
- type: accuracy
|
607 |
+
value: 73.27841291190316
|
608 |
+
- type: f1
|
609 |
+
value: 70.82287701665152
|
610 |
+
- task:
|
611 |
+
type: Classification
|
612 |
+
dataset:
|
613 |
+
type: mteb/amazon_massive_scenario
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
config: zh-CN
|
616 |
+
split: test
|
617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
+
metrics:
|
619 |
+
- type: accuracy
|
620 |
+
value: 76.20040349697376
|
621 |
+
- type: f1
|
622 |
+
value: 75.92782428878164
|
623 |
+
- task:
|
624 |
+
type: Retrieval
|
625 |
+
dataset:
|
626 |
+
type: C-MTEB/MedicalRetrieval
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
config: default
|
629 |
+
split: dev
|
630 |
+
revision: None
|
631 |
+
metrics:
|
632 |
+
- type: map_at_1
|
633 |
+
value: 56.39999999999999
|
634 |
+
- type: map_at_10
|
635 |
+
value: 62.122
|
636 |
+
- type: map_at_100
|
637 |
+
value: 62.692
|
638 |
+
- type: map_at_1000
|
639 |
+
value: 62.739
|
640 |
+
- type: map_at_3
|
641 |
+
value: 60.617
|
642 |
+
- type: map_at_5
|
643 |
+
value: 61.582
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 56.39999999999999
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 62.125
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 62.696
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 62.742
|
652 |
+
- type: mrr_at_3
|
653 |
+
value: 60.617
|
654 |
+
- type: mrr_at_5
|
655 |
+
value: 61.602000000000004
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 56.39999999999999
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 64.986
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 67.889
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 69.16499999999999
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 61.951
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 63.685
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 56.39999999999999
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 7.3999999999999995
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 0.8789999999999999
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.098
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 21.933
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 14.000000000000002
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 56.39999999999999
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 74.0
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 87.9
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 98.0
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 65.8
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 70.0
|
692 |
+
- task:
|
693 |
+
type: Classification
|
694 |
+
dataset:
|
695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
config: default
|
698 |
+
split: validation
|
699 |
+
revision: None
|
700 |
+
metrics:
|
701 |
+
- type: accuracy
|
702 |
+
value: 76.64
|
703 |
+
- type: f1
|
704 |
+
value: 76.5446299028248
|
705 |
+
- task:
|
706 |
+
type: PairClassification
|
707 |
+
dataset:
|
708 |
+
type: C-MTEB/OCNLI
|
709 |
+
name: MTEB Ocnli
|
710 |
+
config: default
|
711 |
+
split: validation
|
712 |
+
revision: None
|
713 |
+
metrics:
|
714 |
+
- type: cos_sim_accuracy
|
715 |
+
value: 82.34975636166757
|
716 |
+
- type: cos_sim_ap
|
717 |
+
value: 85.51352392694149
|
718 |
+
- type: cos_sim_f1
|
719 |
+
value: 83.53057199211045
|
720 |
+
- type: cos_sim_precision
|
721 |
+
value: 78.35337650323775
|
722 |
+
- type: cos_sim_recall
|
723 |
+
value: 89.44033790918691
|
724 |
+
- type: dot_accuracy
|
725 |
+
value: 82.34975636166757
|
726 |
+
- type: dot_ap
|
727 |
+
value: 85.51347115601486
|
728 |
+
- type: dot_f1
|
729 |
+
value: 83.53057199211045
|
730 |
+
- type: dot_precision
|
731 |
+
value: 78.35337650323775
|
732 |
+
- type: dot_recall
|
733 |
+
value: 89.44033790918691
|
734 |
+
- type: euclidean_accuracy
|
735 |
+
value: 82.34975636166757
|
736 |
+
- type: euclidean_ap
|
737 |
+
value: 85.51352392694149
|
738 |
+
- type: euclidean_f1
|
739 |
+
value: 83.53057199211045
|
740 |
+
- type: euclidean_precision
|
741 |
+
value: 78.35337650323775
|
742 |
+
- type: euclidean_recall
|
743 |
+
value: 89.44033790918691
|
744 |
+
- type: manhattan_accuracy
|
745 |
+
value: 82.34975636166757
|
746 |
+
- type: manhattan_ap
|
747 |
+
value: 85.48313896880585
|
748 |
+
- type: manhattan_f1
|
749 |
+
value: 83.52414136386261
|
750 |
+
- type: manhattan_precision
|
751 |
+
value: 79.00188323917138
|
752 |
+
- type: manhattan_recall
|
753 |
+
value: 88.59556494192185
|
754 |
+
- type: max_accuracy
|
755 |
+
value: 82.34975636166757
|
756 |
+
- type: max_ap
|
757 |
+
value: 85.51352392694149
|
758 |
+
- type: max_f1
|
759 |
+
value: 83.53057199211045
|
760 |
+
- task:
|
761 |
+
type: Classification
|
762 |
+
dataset:
|
763 |
+
type: C-MTEB/OnlineShopping-classification
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
config: default
|
766 |
+
split: test
|
767 |
+
revision: None
|
768 |
+
metrics:
|
769 |
+
- type: accuracy
|
770 |
+
value: 93.39
|
771 |
+
- type: ap
|
772 |
+
value: 91.62127505252761
|
773 |
+
- type: f1
|
774 |
+
value: 93.38126146765326
|
775 |
+
- task:
|
776 |
+
type: STS
|
777 |
+
dataset:
|
778 |
+
type: C-MTEB/PAWSX
|
779 |
+
name: MTEB PAWSX
|
780 |
+
config: default
|
781 |
+
split: test
|
782 |
+
revision: None
|
783 |
+
metrics:
|
784 |
+
- type: cos_sim_pearson
|
785 |
+
value: 39.69424895486595
|
786 |
+
- type: cos_sim_spearman
|
787 |
+
value: 45.357868735202885
|
788 |
+
- type: euclidean_pearson
|
789 |
+
value: 44.85027304963503
|
790 |
+
- type: euclidean_spearman
|
791 |
+
value: 45.356945176162064
|
792 |
+
- type: manhattan_pearson
|
793 |
+
value: 44.866080721344744
|
794 |
+
- type: manhattan_spearman
|
795 |
+
value: 45.37053172312661
|
796 |
+
- task:
|
797 |
+
type: STS
|
798 |
+
dataset:
|
799 |
+
type: C-MTEB/QBQTC
|
800 |
+
name: MTEB QBQTC
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: None
|
804 |
+
metrics:
|
805 |
+
- type: cos_sim_pearson
|
806 |
+
value: 37.03908089465844
|
807 |
+
- type: cos_sim_spearman
|
808 |
+
value: 38.98314179826781
|
809 |
+
- type: euclidean_pearson
|
810 |
+
value: 37.189386019789545
|
811 |
+
- type: euclidean_spearman
|
812 |
+
value: 38.98311189555396
|
813 |
+
- type: manhattan_pearson
|
814 |
+
value: 37.14695118899785
|
815 |
+
- type: manhattan_spearman
|
816 |
+
value: 38.94957261261034
|
817 |
+
- task:
|
818 |
+
type: STS
|
819 |
+
dataset:
|
820 |
+
type: mteb/sts22-crosslingual-sts
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
config: zh
|
823 |
+
split: test
|
824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
825 |
+
metrics:
|
826 |
+
- type: cos_sim_pearson
|
827 |
+
value: 65.08396305098712
|
828 |
+
- type: cos_sim_spearman
|
829 |
+
value: 66.26346934994216
|
830 |
+
- type: euclidean_pearson
|
831 |
+
value: 65.56501615370941
|
832 |
+
- type: euclidean_spearman
|
833 |
+
value: 66.26346934994216
|
834 |
+
- type: manhattan_pearson
|
835 |
+
value: 65.47984748172154
|
836 |
+
- type: manhattan_spearman
|
837 |
+
value: 66.25326746119808
|
838 |
+
- task:
|
839 |
+
type: STS
|
840 |
+
dataset:
|
841 |
+
type: C-MTEB/STSB
|
842 |
+
name: MTEB STSB
|
843 |
+
config: default
|
844 |
+
split: test
|
845 |
+
revision: None
|
846 |
+
metrics:
|
847 |
+
- type: cos_sim_pearson
|
848 |
+
value: 80.95965207330296
|
849 |
+
- type: cos_sim_spearman
|
850 |
+
value: 82.96149593569953
|
851 |
+
- type: euclidean_pearson
|
852 |
+
value: 82.67125448003975
|
853 |
+
- type: euclidean_spearman
|
854 |
+
value: 82.96141174550262
|
855 |
+
- type: manhattan_pearson
|
856 |
+
value: 82.64660468206361
|
857 |
+
- type: manhattan_spearman
|
858 |
+
value: 82.91756025324656
|
859 |
+
- task:
|
860 |
+
type: Reranking
|
861 |
+
dataset:
|
862 |
+
type: C-MTEB/T2Reranking
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
config: default
|
865 |
+
split: dev
|
866 |
+
revision: None
|
867 |
+
metrics:
|
868 |
+
- type: map
|
869 |
+
value: 66.43391960680063
|
870 |
+
- type: mrr
|
871 |
+
value: 76.078440855015
|
872 |
+
- task:
|
873 |
+
type: Retrieval
|
874 |
+
dataset:
|
875 |
+
type: C-MTEB/T2Retrieval
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
config: default
|
878 |
+
split: dev
|
879 |
+
revision: None
|
880 |
+
metrics:
|
881 |
+
- type: map_at_1
|
882 |
+
value: 28.29
|
883 |
+
- type: map_at_10
|
884 |
+
value: 78.441
|
885 |
+
- type: map_at_100
|
886 |
+
value: 82.043
|
887 |
+
- type: map_at_1000
|
888 |
+
value: 82.10499999999999
|
889 |
+
- type: map_at_3
|
890 |
+
value: 55.448
|
891 |
+
- type: map_at_5
|
892 |
+
value: 67.982
|
893 |
+
- type: mrr_at_1
|
894 |
+
value: 91.18
|
895 |
+
- type: mrr_at_10
|
896 |
+
value: 93.498
|
897 |
+
- type: mrr_at_100
|
898 |
+
value: 93.57
|
899 |
+
- type: mrr_at_1000
|
900 |
+
value: 93.572
|
901 |
+
- type: mrr_at_3
|
902 |
+
value: 93.112
|
903 |
+
- type: mrr_at_5
|
904 |
+
value: 93.351
|
905 |
+
- type: ndcg_at_1
|
906 |
+
value: 91.18
|
907 |
+
- type: ndcg_at_10
|
908 |
+
value: 85.849
|
909 |
+
- type: ndcg_at_100
|
910 |
+
value: 89.32600000000001
|
911 |
+
- type: ndcg_at_1000
|
912 |
+
value: 89.9
|
913 |
+
- type: ndcg_at_3
|
914 |
+
value: 87.333
|
915 |
+
- type: ndcg_at_5
|
916 |
+
value: 85.91499999999999
|
917 |
+
- type: precision_at_1
|
918 |
+
value: 91.18
|
919 |
+
- type: precision_at_10
|
920 |
+
value: 42.315000000000005
|
921 |
+
- type: precision_at_100
|
922 |
+
value: 5.029
|
923 |
+
- type: precision_at_1000
|
924 |
+
value: 0.517
|
925 |
+
- type: precision_at_3
|
926 |
+
value: 76.12400000000001
|
927 |
+
- type: precision_at_5
|
928 |
+
value: 63.690000000000005
|
929 |
+
- type: recall_at_1
|
930 |
+
value: 28.29
|
931 |
+
- type: recall_at_10
|
932 |
+
value: 84.679
|
933 |
+
- type: recall_at_100
|
934 |
+
value: 95.952
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.821
|
937 |
+
- type: recall_at_3
|
938 |
+
value: 56.987
|
939 |
+
- type: recall_at_5
|
940 |
+
value: 71.15599999999999
|
941 |
+
- task:
|
942 |
+
type: Classification
|
943 |
+
dataset:
|
944 |
+
type: C-MTEB/TNews-classification
|
945 |
+
name: MTEB TNews
|
946 |
+
config: default
|
947 |
+
split: validation
|
948 |
+
revision: None
|
949 |
+
metrics:
|
950 |
+
- type: accuracy
|
951 |
+
value: 53.09799999999999
|
952 |
+
- type: f1
|
953 |
+
value: 51.397192036892314
|
954 |
+
- task:
|
955 |
+
type: Clustering
|
956 |
+
dataset:
|
957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
config: default
|
960 |
+
split: test
|
961 |
+
revision: None
|
962 |
+
metrics:
|
963 |
+
- type: v_measure
|
964 |
+
value: 70.59693805158501
|
965 |
+
- task:
|
966 |
+
type: Clustering
|
967 |
+
dataset:
|
968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
config: default
|
971 |
+
split: test
|
972 |
+
revision: None
|
973 |
+
metrics:
|
974 |
+
- type: v_measure
|
975 |
+
value: 63.21127290121542
|
976 |
+
- task:
|
977 |
+
type: Retrieval
|
978 |
+
dataset:
|
979 |
+
type: C-MTEB/VideoRetrieval
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
config: default
|
982 |
+
split: dev
|
983 |
+
revision: None
|
984 |
+
metrics:
|
985 |
+
- type: map_at_1
|
986 |
+
value: 61.3
|
987 |
+
- type: map_at_10
|
988 |
+
value: 70.658
|
989 |
+
- type: map_at_100
|
990 |
+
value: 71.096
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 71.108
|
993 |
+
- type: map_at_3
|
994 |
+
value: 69.15
|
995 |
+
- type: map_at_5
|
996 |
+
value: 70.125
|
997 |
+
- type: mrr_at_1
|
998 |
+
value: 61.3
|
999 |
+
- type: mrr_at_10
|
1000 |
+
value: 70.658
|
1001 |
+
- type: mrr_at_100
|
1002 |
+
value: 71.096
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 71.108
|
1005 |
+
- type: mrr_at_3
|
1006 |
+
value: 69.15
|
1007 |
+
- type: mrr_at_5
|
1008 |
+
value: 70.125
|
1009 |
+
- type: ndcg_at_1
|
1010 |
+
value: 61.3
|
1011 |
+
- type: ndcg_at_10
|
1012 |
+
value: 74.71
|
1013 |
+
- type: ndcg_at_100
|
1014 |
+
value: 76.783
|
1015 |
+
- type: ndcg_at_1000
|
1016 |
+
value: 77.09899999999999
|
1017 |
+
- type: ndcg_at_3
|
1018 |
+
value: 71.634
|
1019 |
+
- type: ndcg_at_5
|
1020 |
+
value: 73.399
|
1021 |
+
- type: precision_at_1
|
1022 |
+
value: 61.3
|
1023 |
+
- type: precision_at_10
|
1024 |
+
value: 8.72
|
1025 |
+
- type: precision_at_100
|
1026 |
+
value: 0.967
|
1027 |
+
- type: precision_at_1000
|
1028 |
+
value: 0.099
|
1029 |
+
- type: precision_at_3
|
1030 |
+
value: 26.267000000000003
|
1031 |
+
- type: precision_at_5
|
1032 |
+
value: 16.619999999999997
|
1033 |
+
- type: recall_at_1
|
1034 |
+
value: 61.3
|
1035 |
+
- type: recall_at_10
|
1036 |
+
value: 87.2
|
1037 |
+
- type: recall_at_100
|
1038 |
+
value: 96.7
|
1039 |
+
- type: recall_at_1000
|
1040 |
+
value: 99.2
|
1041 |
+
- type: recall_at_3
|
1042 |
+
value: 78.8
|
1043 |
+
- type: recall_at_5
|
1044 |
+
value: 83.1
|
1045 |
+
- task:
|
1046 |
+
type: Classification
|
1047 |
+
dataset:
|
1048 |
+
type: C-MTEB/waimai-classification
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
config: default
|
1051 |
+
split: test
|
1052 |
+
revision: None
|
1053 |
+
metrics:
|
1054 |
+
- type: accuracy
|
1055 |
+
value: 88.01
|
1056 |
+
- type: ap
|
1057 |
+
value: 72.51537272974005
|
1058 |
+
- type: f1
|
1059 |
+
value: 86.49546025793478
|
1060 |
---
|
1061 |
+
|
1062 |
+
|
1063 |
+
**新闻 | News**
|
1064 |
+
**[2024-04-??]** stella-v4系列预计四月份发布,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语
|
1065 |
+
**。
|
1066 |
+
**[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度**。
|
1067 |
+
**[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。
|
1068 |
+
**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**。
|
1069 |
+
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。
|
1070 |
+
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
|
1071 |
+
|
1072 |
+
欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见!
|
1073 |
+
|
1074 |
+
# 1 开源模型
|
1075 |
+
|
1076 |
+
本次开源stella-mrl-large-zh-v3.5-1792d模型,
|
1077 |
+
本模型是在stella-large-zh-v3-1792d的基础上使用[MRL](https://arxiv.org/abs/2205.13147)方法训练而成。
|
1078 |
+
其主要特点是**可变的向量维度**。
|
1079 |
+
|
1080 |
+
# 2 使用方法
|
1081 |
+
|
1082 |
+
```python
|
1083 |
+
from sentence_transformers import SentenceTransformer
|
1084 |
+
from sklearn.preprocessing import normalize
|
1085 |
+
|
1086 |
+
model = SentenceTransformer("infgrad/stella-mrl-large-zh-v3.5-1792d")
|
1087 |
+
# 注意先不要normalize! 选取前n维后再normalize
|
1088 |
+
vectors = model.encode(["text1", "text2"], normalize_embeddings=False)
|
1089 |
+
print(vectors.shape) # shape is [2,1792]
|
1090 |
+
# n_dims越大效果越好,但是时空消耗就越大。建议维度选取128的倍数,因为是这么训练的
|
1091 |
+
n_dims = 768
|
1092 |
+
cut_vecs = normalize(vectors[:, :n_dims])
|
1093 |
+
|
1094 |
+
```
|
1095 |
+
|
1096 |
+
# 3 不同向量维度的CMTEB得分
|
1097 |
+
|
1098 |
+
stella-mrl-large-zh-v3.5-1792d_1024 代表取前1024维。整体趋势是维度越大效果越好。
|
1099 |
+
|
1100 |
+
| Model | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | CMTEB-Score |
|
1101 |
+
|:------------------------------------|:---------:|:-----:|:------------------:|:--------------:|:---------:|:----------:|:-----------:|
|
1102 |
+
| stella-mrl-large-zh-v3.5-1792d_128 | 70.01 | 62.17 | 87.99 | 70.67 | 66.77 | 53.55 | 67.16 |
|
1103 |
+
| stella-mrl-large-zh-v3.5-1792d_256 | 72.19 | 62.41 | 88.09 | 71.22 | 68.32 | 53.38 | 68.02 |
|
1104 |
+
| stella-mrl-large-zh-v3.5-1792d_384 | 72.77 | 62.43 | 88.26 | 71.34 | 68.31 | 53.87 | 68.25 |
|
1105 |
+
| stella-mrl-large-zh-v3.5-1792d_512 | 73.11 | 62.45 | 88.16 | 71.46 | 68.32 | 53.28 | 68.29 |
|
1106 |
+
| stella-mrl-large-zh-v3.5-1792d_640 | 73.27 | 62.49 | 88.21 | 71.46 | 68.69 | 53.63 | 68.42 |
|
1107 |
+
| stella-mrl-large-zh-v3.5-1792d_768 | 73.38 | 62.5 | 88.19 | 71.49 | 68.64 | 53.77 | 68.47 |
|
1108 |
+
| stella-mrl-large-zh-v3.5-1792d_896 | 73.37 | 62.5 | 88.14 | 71.51 | 68.44 | 54.13 | 68.49 |
|
1109 |
+
| stella-mrl-large-zh-v3.5-1792d_1024 | 73.43 | 62.51 | 88.16 | 71.52 | 68.59 | 53.43 | 68.44 |
|
1110 |
+
| stella-mrl-large-zh-v3.5-1792d_1152 | 73.46 | 62.49 | 88.16 | 71.57 | 68.55 | 53.67 | 68.49 |
|
1111 |
+
| stella-mrl-large-zh-v3.5-1792d_1280 | 73.48 | 62.51 | 88.12 | 71.55 | 68.44 | 53.74 | 68.48 |
|
1112 |
+
| stella-mrl-large-zh-v3.5-1792d_1408 | 73.48 | 62.51 | 88.14 | 71.58 | 68.46 | 53.69 | 68.48 |
|
1113 |
+
| stella-mrl-large-zh-v3.5-1792d_1536 | 73.49 | 62.5 | 88.11 | 71.55 | 68.5 | 54.06 | 68.52 |
|
1114 |
+
| stella-mrl-large-zh-v3.5-1792d_1664 | 73.56 | 62.49 | 88.06 | 71.56 | 68.47 | 54.28 | 68.56 |
|
1115 |
+
| stella-mrl-large-zh-v3.5-1792d_1792 | 73.51 | 62.48 | 88.09 | 71.56 | 68.45 | 54.39 | 68.56 |
|
1116 |
+
|
1117 |
+
上述表格中stella-mrl-large-zh-v3.5-1792d_1792的得分为68.56和榜单68.55得分不一致,原因和权重类型���关,小差异请忽略不计。
|