durgaamma2005 commited on
Commit
1a94340
·
1 Parent(s): 82b8476

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wikiann
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: indic-transformers-te-distilbert
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: wikiann
19
+ type: wikiann
20
+ args: te
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.5657225853304285
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.6486261448792673
28
+ - name: F1
29
+ type: f1
30
+ value: 0.604344453064391
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.9049186160277506
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # indic-transformers-te-distilbert
40
+
41
+ This model was trained from scratch on the wikiann dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.2940
44
+ - Precision: 0.5657
45
+ - Recall: 0.6486
46
+ - F1: 0.6043
47
+ - Accuracy: 0.9049
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 2e-05
67
+ - train_batch_size: 8
68
+ - eval_batch_size: 8
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 3
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 1.0 | 125 | 0.3629 | 0.4855 | 0.5287 | 0.5062 | 0.8826 |
79
+ | No log | 2.0 | 250 | 0.3032 | 0.5446 | 0.6303 | 0.5843 | 0.9002 |
80
+ | No log | 3.0 | 375 | 0.2940 | 0.5657 | 0.6486 | 0.6043 | 0.9049 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.15.0
86
+ - Pytorch 1.10.0+cu111
87
+ - Datasets 1.17.0
88
+ - Tokenizers 0.10.3