--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: indic-transformers-te-distilbert results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: te metrics: - name: Precision type: precision value: 0.5657225853304285 - name: Recall type: recall value: 0.6486261448792673 - name: F1 type: f1 value: 0.604344453064391 - name: Accuracy type: accuracy value: 0.9049186160277506 --- # indic-transformers-te-distilbert This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2940 - Precision: 0.5657 - Recall: 0.6486 - F1: 0.6043 - Accuracy: 0.9049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.3629 | 0.4855 | 0.5287 | 0.5062 | 0.8826 | | No log | 2.0 | 250 | 0.3032 | 0.5446 | 0.6303 | 0.5843 | 0.9002 | | No log | 3.0 | 375 | 0.2940 | 0.5657 | 0.6486 | 0.6043 | 0.9049 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3