Upload wikitext-wordlevel.py
Browse files- wikitext-wordlevel.py +40 -0
wikitext-wordlevel.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
from collections.abc import Iterator
|
5 |
+
|
6 |
+
from datasets import load_dataset
|
7 |
+
from tokenizers import Tokenizer
|
8 |
+
from tokenizers.models import WordLevel
|
9 |
+
from tokenizers.normalizers import Sequence, NFC, Strip, Lowercase
|
10 |
+
from tokenizers.pre_tokenizers import Whitespace
|
11 |
+
from tokenizers.trainers import WordLevelTrainer
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
|
14 |
+
|
15 |
+
def main() -> None:
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument('--vocabulary', type=int, default=75000, help='Vocabulary size')
|
18 |
+
parser.add_argument('--batch', type=int, default=1024, help='Batch size')
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
dataset = load_dataset('wikitext', 'wikitext-103-raw-v1', split='train+validation+test')
|
22 |
+
|
23 |
+
tokenizer = Tokenizer(WordLevel(unk_token='<unk>'))
|
24 |
+
tokenizer.normalizer = Sequence([NFC(), Strip(), Lowercase()])
|
25 |
+
tokenizer.pre_tokenizer = Whitespace()
|
26 |
+
|
27 |
+
def batches(batch_size: int) -> Iterator[str]:
|
28 |
+
for batch in tqdm(dataset.iter(batch_size=batch_size), desc='Tokenization'):
|
29 |
+
yield batch['text']
|
30 |
+
|
31 |
+
trainer = WordLevelTrainer(vocab_size=args.vocabulary,
|
32 |
+
special_tokens=['<s>', '</s>', '<unk>'])
|
33 |
+
|
34 |
+
tokenizer.train_from_iterator(batches(args.batch), trainer=trainer, length=len(dataset))
|
35 |
+
|
36 |
+
tokenizer.save('tokenizer.json', pretty=True)
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == '__main__':
|
40 |
+
main()
|