--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - QwQ-32B-Preview --- Quantizations of https://huggingface.co/Qwen/QwQ-32B-Preview ### Inference Clients/UIs * [llama.cpp](https://github.com/ggerganov/llama.cpp) * [KoboldCPP](https://github.com/LostRuins/koboldcpp) * [ollama](https://github.com/ollama/ollama) * [jan](https://github.com/janhq/jan) * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [GPT4All](https://github.com/nomic-ai/gpt4all) --- # From original readme ## Introduction **QwQ-32B-Preview** is an experimental research model developed by the Qwen Team, focused on advancing AI reasoning capabilities. As a preview release, it demonstrates promising analytical abilities while having several important limitations: 1. **Language Mixing and Code-Switching**: The model may mix languages or switch between them unexpectedly, affecting response clarity. 2. **Recursive Reasoning Loops**: The model may enter circular reasoning patterns, leading to lengthy responses without a conclusive answer. 3. **Safety and Ethical Considerations**: The model requires enhanced safety measures to ensure reliable and secure performance, and users should exercise caution when deploying it. 4. **Performance and Benchmark Limitations**: The model excels in math and coding but has room for improvement in other areas, such as common sense reasoning and nuanced language understanding. **Specification**: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 32.5B - Number of Paramaters (Non-Embedding): 31.0B - Number of Layers: 64 - Number of Attention Heads (GQA): 40 for Q and 8 for KV - Context Length: Full 32,768 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwq-32b-preview/). You can also check Qwen2.5 [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/QwQ-32B-Preview" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "How many r in strawberry." messages = [ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```