dvalbuena1 commited on
Commit
3cadb16
1 Parent(s): 4c4230b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 836.44 +/- 139.46
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb77d6f53fc67d61142453b463e86583a7040e0970817df3360c9546dac14c2
3
+ size 129193
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd55869b90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd55869c20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd55869cb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd55869d40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efd55869dd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efd55869e60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd55869ef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efd55869f80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd55870050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd558700e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd55870170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efd558b5840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1662002411.4674146,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA5C46PqMSI73WsBs/YDyUPuaQ37/Byjk/PibTv0khuz6Lf9K+L5QCPxeBSL+sEi+76/2JPjepjz6eBQI/7qXrO8bYh76jTxO/YxPWvzqskr3v7Yy/8q+aO4GPcL/Zpiy9v9APPzVApj76KfY+uSKgv3cAYr+8bQk/PugPP6Gw4r9nKA++EP8gPwjeMT9znjk/fwq0v79F5D63+gm/Da3Dvk0eqz+ROTY+mk6HvpYDJr+JHri//5aSPmFE0z4KYni/ewq0PiGiwD8jqXC/RUZBvL/QDz81QKY++in2PmSgTD9M1lQ91jtkvcgfGz9yUqk8hItpv9wXiDzFn5E+Fu4fv2Z9DL7sV9U/+QIlP0W3JDwuiZk/u0SGPwlKAj+yM2c8hwiVP4f/iD+OnAI+UoB3PjLjbb/1JII/dD0vv9mNjDu/0A8/NUCmPvop9j65IqC/KNY/v82NsL7HQAg/fZXYvQZLTr8LNpW+Z3uYPXD0zD70k2y/Lha3PWit576xqyM/W6ypvndgvT5gBi4+FPS6vVz1pr+/1ZA+aeynPpe/zT83UXe/D63AvgWX5b7QKMi+v9APPzVApj76KfY+ZKBMP5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAH2L/7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBgy7G9AAAAADc14b8AAAAAKfYCvgAAAADTw+E/AAAAANUetj0AAAAAWVriPwAAAABpagU+AAAAAFqk8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkPsO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0JOrPQAAAAB3Leu/AAAAALD/9b0AAAAAo3vyPwAAAABjk709AAAAABwp9T8AAAAA7SYLPgAAAAAevN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZRgTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+q27oAAAAAvaDyvwAAAABpHQe+AAAAADaQ6j8AAAAAysHUPAAAAABnv90/AAAAAFKpzrsAAAAAi3P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1QDTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDlGX69AAAAAO4m2b8AAAAAe2gJPgAAAAD30fg/AAAAAKAyBz0AAAAAbfv+PwAAAAChFAa+AAAAACEr8b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIppK0tyxRmMAWyUTegDjAF0lEdAqNd3rleWwHV9lChoBkdAiKpOvECNj2gHTegDaAhHQKjYL/nW8RN1fZQoaAZHQIfi0W0qpcZoB03oA2gIR0Co2DPRJEpidX2UKGgGR0CHmYJpnHvMaAdN6ANoCEdAqNm29vjwQXV9lChoBkdAgSeuSOinHmgHTegDaAhHQKjko4ZMtbt1fZQoaAZHQIrcgdS2phpoB03oA2gIR0Co5VevhZQpdX2UKGgGR0COCdirDIikaAdN6ANoCEdAqOVbj7yhBnV9lChoBkdAh1nnyEtdzGgHTegDaAhHQKjm4G8mKIl1fZQoaAZHQIlO3KW9lEtoB03oA2gIR0Co8a3cYZVGdX2UKGgGR0COOQ3QUpNLaAdN6ANoCEdAqPJeRkmQbXV9lChoBkdAiQy9Sl3yJGgHTegDaAhHQKjyYhOgxrV1fZQoaAZHQIuNT4etCAtoB03oA2gIR0Co89vAXVLBdX2UKGgGR0CEa5lsguAaaAdN6ANoCEdAqP6fGn4wiHV9lChoBkdAi4RsCcPOIWgHTegDaAhHQKj/RvQ4S6F1fZQoaAZHQIjrZTn7pFFoB03oA2gIR0Co/0unuRcNdX2UKGgGR0CG+WU21lXjaAdN6ANoCEdAqQDHWcz68HV9lChoBkdAjTvS/CZWrGgHTegDaAhHQKkLiKyfL9x1fZQoaAZHQIzF4jB2wFFoB03oA2gIR0CpDDTTnaFmdX2UKGgGR0CJxkWuX/o8aAdN6ANoCEdAqQw4ppeu3nV9lChoBkdAgA+Fo11numgHTegDaAhHQKkNtjEvTPV1fZQoaAZHQItojnNgSe1oB03oA2gIR0CpGJYRmK64dX2UKGgGR0CLX+CvovBaaAdN6ANoCEdAqRlIymALA3V9lChoBkdAjrOyjHn2ZmgHTegDaAhHQKkZTKB/Zuh1fZQoaAZHQIvgdfgJkXloB03oA2gIR0CpGs4lY2bYdX2UKGgGR0CPf1o7FKkEaAdN6ANoCEdAqSWdyNn5BXV9lChoBkdAjbxJYDDCQGgHTegDaAhHQKkmS66J66d1fZQoaAZHQI51riIcinpoB03oA2gIR0CpJk+DWbw0dX2UKGgGR0CNQ0x0MgEEaAdN6ANoCEdAqSfSq+8Gs3V9lChoBkdAjFzXSa3I/GgHTegDaAhHQKk0A0hNdqt1fZQoaAZHQI4C4d8zAN5oB03oA2gIR0CpNK57XxvvdX2UKGgGR0CJDneTFERbaAdN6ANoCEdAqTSyOWBz3nV9lChoBkdAjZA8G1QZXWgHTegDaAhHQKk2LdC3PRl1fZQoaAZHQI2mJkAggYBoB03oA2gIR0CpQOcnVoYfdX2UKGgGR0CLWoScLBsRaAdN6ANoCEdAqUGX2TPjXHV9lChoBkdAkCb91QqI8GgHTegDaAhHQKlBm/L1VYJ1fZQoaAZHQJA6SVJL/S9oB03oA2gIR0CpQxp9iMHbdX2UKGgGR0CPum7aqS5iaAdN6ANoCEdAqU36LQ5WBHV9lChoBkdAjlQheokzGmgHTegDaAhHQKlOsbaRISV1fZQoaAZHQIwybND+irVoB03oA2gIR0CpTrVnM+vAdX2UKGgGR0COBkFr2xptaAdN6ANoCEdAqVA41gpjMHV9lChoBkdAjGJzpxFRYWgHTegDaAhHQKla9ByCFsZ1fZQoaAZHQIY5g/Z/Tb5oB03oA2gIR0CpW5/hddE9dX2UKGgGR0CIyHCE6DGtaAdN6ANoCEdAqVuj655JLHV9lChoBkdAi0Hla0QbuWgHTegDaAhHQKldIY8+zMR1fZQoaAZHQI7NZArxy4poB03oA2gIR0CpZ8n+Q2dedX2UKGgGR0CNI/zxPO6eaAdN6ANoCEdAqWh1xAB1cXV9lChoBkdAitY0WEbo82gHTegDaAhHQKloeXC0ngJ1fZQoaAZHQI78g9FF2FFoB03oA2gIR0CpaffPHDJmdX2UKGgGR0COdvnxJ/XoaAdN6ANoCEdAqXTEZR8+inV9lChoBkdAj0ziaZx7zGgHTegDaAhHQKl1cPiDM/11fZQoaAZHQI4l7RYzSCxoB03oA2gIR0CpdXTZpSJkdX2UKGgGR0CLznjfek57aAdN6ANoCEdAqXb1+qioKnV9lChoBkdAiMe4QarFO2gHTegDaAhHQKmBz26kIop1fZQoaAZHQJAMCyzHCGhoB03oA2gIR0Cpgn642CNCdX2UKGgGR0CJhFq9GqgiaAdN6ANoCEdAqYKCl54W13V9lChoBkdAiy9uPV/c32gHTegDaAhHQKmECjzI3it1fZQoaAZHQI8d5EWqLjxoB03oA2gIR0CpjvM0gr6MdX2UKGgGR0COkXe9Ba9saAdN6ANoCEdAqY+lzhgmZ3V9lChoBkdAjUfLELpiZ2gHTegDaAhHQKmPqd3jdYZ1fZQoaAZHQI6nzsKLKmtoB03oA2gIR0CpkSqPGQ0XdX2UKGgGR0CP08XjU/fPaAdN6ANoCEdAqZvgeT3Zf3V9lChoBkdAkHuPEsJ6Y2gHTegDaAhHQKmciA6Mir11fZQoaAZHQJAA2wX668RoB03oA2gIR0CpnIvwEyLydX2UKGgGR0CPPRsTFl06aAdN6ANoCEdAqZ4K7Ciyp3V9lChoBkdAjbmxyGSIQGgHTegDaAhHQKmovpUPxx11fZQoaAZHQJCZddRiw0RoB03oA2gIR0CpqWh4Uvf1dX2UKGgGR0CPE8U8mrsCaAdN6ANoCEdAqalsVQAMlXV9lChoBkdAjkWMcZLqU2gHTegDaAhHQKmq6ys0YTF1fZQoaAZHQIroaaRZED1oB03oA2gIR0CptbyiVSn+dX2UKGgGR0CL0eocaOxTaAdN6ANoCEdAqbZxEDyOJnV9lChoBkdAi8osRxtHhGgHTegDaAhHQKm2dLHuJDV1fZQoaAZHQILZVF8XvYxoB03oA2gIR0Cpt/SJj2BbdX2UKGgGR0CKzXVMmF8HaAdN6ANoCEdAqcLIMz/IbXV9lChoBkdAi6nSRB/qgWgHTegDaAhHQKnDc84gieN1fZQoaAZHQIRIRwAEMb5oB03oA2gIR0Cpw3eUpuuSdX2UKGgGR0COwUjOcDr7aAdN6ANoCEdAqcT4JC0F83V9lChoBkdAjJTOtW+49WgHTegDaAhHQKnPwLOzIFN1fZQoaAZHQJALpaouPFNoB03oA2gIR0Cp0G9t2s7udX2UKGgGR0CKaYrELpiaaAdN6ANoCEdAqdBzKifxt3V9lChoBkdAjvzTrNW2gGgHTegDaAhHQKnR8KtPpIN1fZQoaAZHQIstMtsenydoB03oA2gIR0Cp3LbnxJ/YdX2UKGgGR0CN9btIkJKKaAdN6ANoCEdAqd1gSrYGuHV9lChoBkdAiiYhOHnEEWgHTegDaAhHQKndZCHh0hh1fZQoaAZHQIOLbf+CK79oB03oA2gIR0Cp3t3G4qgAdX2UKGgGR0CFog5LAYYSaAdN6ANoCEdAqemn8dgfEHV9lChoBkdAj7GzTWoWHmgHTegDaAhHQKnqYZVn27F1fZQoaAZHQJBWh2gWac9oB03oA2gIR0Cp6mV0tAcDdX2UKGgGR0CItaq7ROUMaAdN6ANoCEdAqevrU/fO2XV9lChoBkdAig2HUUfxMGgHTegDaAhHQKn2kE/Spit1fZQoaAZHQI3vsx9G7SRoB03oA2gIR0Cp9z7JfYz0dX2UKGgGR0CO+xbXYlIFaAdN6ANoCEdAqfdCl1r6+HV9lChoBkdAhKR+bmU4aWgHTegDaAhHQKn4ujL0SRN1fZQoaAZHQIXqX0/W1+loB03oA2gIR0CqA3AXuVopdX2UKGgGR0COJqTbnHNpaAdN6ANoCEdAqgQbE74i5nV9lChoBkdAjV42fbsWwmgHTegDaAhHQKoEHvCMxXZ1fZQoaAZHQIqJxgkTpPhoB03oA2gIR0CqBaMK1G9YdX2UKGgGR0CQfyFz+3pfaAdN6ANoCEdAqhBhWeYlY3V9lChoBkdAheCN4A0bcWgHTegDaAhHQKoRCpTdcjZ1fZQoaAZHQIhBU8La24NoB03oA2gIR0CqEQ5TQ3PzdX2UKGgGR0CPzeRFqi48aAdN6ANoCEdAqhKNwvQF93VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ff7bfe8186425befc85861ef6ca74cd7a3f03d956ab21274abff43e7a921d51
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c95a481b8d18ea164c8b07e56aa30eca779c243e64e301bb56b7ce4353fb447f
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd55869b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd55869c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd55869cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd55869d40>", "_build": "<function ActorCriticPolicy._build at 0x7efd55869dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7efd55869e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd55869ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd55869f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd55870050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd558700e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd55870170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd558b5840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662002411.4674146, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA5C46PqMSI73WsBs/YDyUPuaQ37/Byjk/PibTv0khuz6Lf9K+L5QCPxeBSL+sEi+76/2JPjepjz6eBQI/7qXrO8bYh76jTxO/YxPWvzqskr3v7Yy/8q+aO4GPcL/Zpiy9v9APPzVApj76KfY+uSKgv3cAYr+8bQk/PugPP6Gw4r9nKA++EP8gPwjeMT9znjk/fwq0v79F5D63+gm/Da3Dvk0eqz+ROTY+mk6HvpYDJr+JHri//5aSPmFE0z4KYni/ewq0PiGiwD8jqXC/RUZBvL/QDz81QKY++in2PmSgTD9M1lQ91jtkvcgfGz9yUqk8hItpv9wXiDzFn5E+Fu4fv2Z9DL7sV9U/+QIlP0W3JDwuiZk/u0SGPwlKAj+yM2c8hwiVP4f/iD+OnAI+UoB3PjLjbb/1JII/dD0vv9mNjDu/0A8/NUCmPvop9j65IqC/KNY/v82NsL7HQAg/fZXYvQZLTr8LNpW+Z3uYPXD0zD70k2y/Lha3PWit576xqyM/W6ypvndgvT5gBi4+FPS6vVz1pr+/1ZA+aeynPpe/zT83UXe/D63AvgWX5b7QKMi+v9APPzVApj76KfY+ZKBMP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAH2L/7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBgy7G9AAAAADc14b8AAAAAKfYCvgAAAADTw+E/AAAAANUetj0AAAAAWVriPwAAAABpagU+AAAAAFqk8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkPsO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0JOrPQAAAAB3Leu/AAAAALD/9b0AAAAAo3vyPwAAAABjk709AAAAABwp9T8AAAAA7SYLPgAAAAAevN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZRgTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+q27oAAAAAvaDyvwAAAABpHQe+AAAAADaQ6j8AAAAAysHUPAAAAABnv90/AAAAAFKpzrsAAAAAi3P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1QDTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDlGX69AAAAAO4m2b8AAAAAe2gJPgAAAAD30fg/AAAAAKAyBz0AAAAAbfv+PwAAAAChFAa+AAAAACEr8b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIppK0tyxRmMAWyUTegDjAF0lEdAqNd3rleWwHV9lChoBkdAiKpOvECNj2gHTegDaAhHQKjYL/nW8RN1fZQoaAZHQIfi0W0qpcZoB03oA2gIR0Co2DPRJEpidX2UKGgGR0CHmYJpnHvMaAdN6ANoCEdAqNm29vjwQXV9lChoBkdAgSeuSOinHmgHTegDaAhHQKjko4ZMtbt1fZQoaAZHQIrcgdS2phpoB03oA2gIR0Co5VevhZQpdX2UKGgGR0COCdirDIikaAdN6ANoCEdAqOVbj7yhBnV9lChoBkdAh1nnyEtdzGgHTegDaAhHQKjm4G8mKIl1fZQoaAZHQIlO3KW9lEtoB03oA2gIR0Co8a3cYZVGdX2UKGgGR0COOQ3QUpNLaAdN6ANoCEdAqPJeRkmQbXV9lChoBkdAiQy9Sl3yJGgHTegDaAhHQKjyYhOgxrV1fZQoaAZHQIuNT4etCAtoB03oA2gIR0Co89vAXVLBdX2UKGgGR0CEa5lsguAaaAdN6ANoCEdAqP6fGn4wiHV9lChoBkdAi4RsCcPOIWgHTegDaAhHQKj/RvQ4S6F1fZQoaAZHQIjrZTn7pFFoB03oA2gIR0Co/0unuRcNdX2UKGgGR0CG+WU21lXjaAdN6ANoCEdAqQDHWcz68HV9lChoBkdAjTvS/CZWrGgHTegDaAhHQKkLiKyfL9x1fZQoaAZHQIzF4jB2wFFoB03oA2gIR0CpDDTTnaFmdX2UKGgGR0CJxkWuX/o8aAdN6ANoCEdAqQw4ppeu3nV9lChoBkdAgA+Fo11numgHTegDaAhHQKkNtjEvTPV1fZQoaAZHQItojnNgSe1oB03oA2gIR0CpGJYRmK64dX2UKGgGR0CLX+CvovBaaAdN6ANoCEdAqRlIymALA3V9lChoBkdAjrOyjHn2ZmgHTegDaAhHQKkZTKB/Zuh1fZQoaAZHQIvgdfgJkXloB03oA2gIR0CpGs4lY2bYdX2UKGgGR0CPf1o7FKkEaAdN6ANoCEdAqSWdyNn5BXV9lChoBkdAjbxJYDDCQGgHTegDaAhHQKkmS66J66d1fZQoaAZHQI51riIcinpoB03oA2gIR0CpJk+DWbw0dX2UKGgGR0CNQ0x0MgEEaAdN6ANoCEdAqSfSq+8Gs3V9lChoBkdAjFzXSa3I/GgHTegDaAhHQKk0A0hNdqt1fZQoaAZHQI4C4d8zAN5oB03oA2gIR0CpNK57XxvvdX2UKGgGR0CJDneTFERbaAdN6ANoCEdAqTSyOWBz3nV9lChoBkdAjZA8G1QZXWgHTegDaAhHQKk2LdC3PRl1fZQoaAZHQI2mJkAggYBoB03oA2gIR0CpQOcnVoYfdX2UKGgGR0CLWoScLBsRaAdN6ANoCEdAqUGX2TPjXHV9lChoBkdAkCb91QqI8GgHTegDaAhHQKlBm/L1VYJ1fZQoaAZHQJA6SVJL/S9oB03oA2gIR0CpQxp9iMHbdX2UKGgGR0CPum7aqS5iaAdN6ANoCEdAqU36LQ5WBHV9lChoBkdAjlQheokzGmgHTegDaAhHQKlOsbaRISV1fZQoaAZHQIwybND+irVoB03oA2gIR0CpTrVnM+vAdX2UKGgGR0COBkFr2xptaAdN6ANoCEdAqVA41gpjMHV9lChoBkdAjGJzpxFRYWgHTegDaAhHQKla9ByCFsZ1fZQoaAZHQIY5g/Z/Tb5oB03oA2gIR0CpW5/hddE9dX2UKGgGR0CIyHCE6DGtaAdN6ANoCEdAqVuj655JLHV9lChoBkdAi0Hla0QbuWgHTegDaAhHQKldIY8+zMR1fZQoaAZHQI7NZArxy4poB03oA2gIR0CpZ8n+Q2dedX2UKGgGR0CNI/zxPO6eaAdN6ANoCEdAqWh1xAB1cXV9lChoBkdAitY0WEbo82gHTegDaAhHQKloeXC0ngJ1fZQoaAZHQI78g9FF2FFoB03oA2gIR0CpaffPHDJmdX2UKGgGR0COdvnxJ/XoaAdN6ANoCEdAqXTEZR8+inV9lChoBkdAj0ziaZx7zGgHTegDaAhHQKl1cPiDM/11fZQoaAZHQI4l7RYzSCxoB03oA2gIR0CpdXTZpSJkdX2UKGgGR0CLznjfek57aAdN6ANoCEdAqXb1+qioKnV9lChoBkdAiMe4QarFO2gHTegDaAhHQKmBz26kIop1fZQoaAZHQJAMCyzHCGhoB03oA2gIR0Cpgn642CNCdX2UKGgGR0CJhFq9GqgiaAdN6ANoCEdAqYKCl54W13V9lChoBkdAiy9uPV/c32gHTegDaAhHQKmECjzI3it1fZQoaAZHQI8d5EWqLjxoB03oA2gIR0CpjvM0gr6MdX2UKGgGR0COkXe9Ba9saAdN6ANoCEdAqY+lzhgmZ3V9lChoBkdAjUfLELpiZ2gHTegDaAhHQKmPqd3jdYZ1fZQoaAZHQI6nzsKLKmtoB03oA2gIR0CpkSqPGQ0XdX2UKGgGR0CP08XjU/fPaAdN6ANoCEdAqZvgeT3Zf3V9lChoBkdAkHuPEsJ6Y2gHTegDaAhHQKmciA6Mir11fZQoaAZHQJAA2wX668RoB03oA2gIR0CpnIvwEyLydX2UKGgGR0CPPRsTFl06aAdN6ANoCEdAqZ4K7Ciyp3V9lChoBkdAjbmxyGSIQGgHTegDaAhHQKmovpUPxx11fZQoaAZHQJCZddRiw0RoB03oA2gIR0CpqWh4Uvf1dX2UKGgGR0CPE8U8mrsCaAdN6ANoCEdAqalsVQAMlXV9lChoBkdAjkWMcZLqU2gHTegDaAhHQKmq6ys0YTF1fZQoaAZHQIroaaRZED1oB03oA2gIR0CptbyiVSn+dX2UKGgGR0CL0eocaOxTaAdN6ANoCEdAqbZxEDyOJnV9lChoBkdAi8osRxtHhGgHTegDaAhHQKm2dLHuJDV1fZQoaAZHQILZVF8XvYxoB03oA2gIR0Cpt/SJj2BbdX2UKGgGR0CKzXVMmF8HaAdN6ANoCEdAqcLIMz/IbXV9lChoBkdAi6nSRB/qgWgHTegDaAhHQKnDc84gieN1fZQoaAZHQIRIRwAEMb5oB03oA2gIR0Cpw3eUpuuSdX2UKGgGR0COwUjOcDr7aAdN6ANoCEdAqcT4JC0F83V9lChoBkdAjJTOtW+49WgHTegDaAhHQKnPwLOzIFN1fZQoaAZHQJALpaouPFNoB03oA2gIR0Cp0G9t2s7udX2UKGgGR0CKaYrELpiaaAdN6ANoCEdAqdBzKifxt3V9lChoBkdAjvzTrNW2gGgHTegDaAhHQKnR8KtPpIN1fZQoaAZHQIstMtsenydoB03oA2gIR0Cp3LbnxJ/YdX2UKGgGR0CN9btIkJKKaAdN6ANoCEdAqd1gSrYGuHV9lChoBkdAiiYhOHnEEWgHTegDaAhHQKndZCHh0hh1fZQoaAZHQIOLbf+CK79oB03oA2gIR0Cp3t3G4qgAdX2UKGgGR0CFog5LAYYSaAdN6ANoCEdAqemn8dgfEHV9lChoBkdAj7GzTWoWHmgHTegDaAhHQKnqYZVn27F1fZQoaAZHQJBWh2gWac9oB03oA2gIR0Cp6mV0tAcDdX2UKGgGR0CItaq7ROUMaAdN6ANoCEdAqevrU/fO2XV9lChoBkdAig2HUUfxMGgHTegDaAhHQKn2kE/Spit1fZQoaAZHQI3vsx9G7SRoB03oA2gIR0Cp9z7JfYz0dX2UKGgGR0CO+xbXYlIFaAdN6ANoCEdAqfdCl1r6+HV9lChoBkdAhKR+bmU4aWgHTegDaAhHQKn4ujL0SRN1fZQoaAZHQIXqX0/W1+loB03oA2gIR0CqA3AXuVopdX2UKGgGR0COJqTbnHNpaAdN6ANoCEdAqgQbE74i5nV9lChoBkdAjV42fbsWwmgHTegDaAhHQKoEHvCMxXZ1fZQoaAZHQIqJxgkTpPhoB03oA2gIR0CqBaMK1G9YdX2UKGgGR0CQfyFz+3pfaAdN6ANoCEdAqhBhWeYlY3V9lChoBkdAheCN4A0bcWgHTegDaAhHQKoRCpTdcjZ1fZQoaAZHQIhBU8La24NoB03oA2gIR0CqEQ5TQ3PzdX2UKGgGR0CPzeRFqi48aAdN6ANoCEdAqhKNwvQF93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (873 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 836.4352031249553, "std_reward": 139.45597165324492, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-01T04:20:19.879468"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd85846b876645e4c4a8cb7dcaf31daadceddbf217670c4649b8979936dec284
3
+ size 2763