dvalbuena1
commited on
Commit
•
3cadb16
1
Parent(s):
4c4230b
Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 836.44 +/- 139.46
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbb77d6f53fc67d61142453b463e86583a7040e0970817df3360c9546dac14c2
|
3 |
+
size 129193
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efd55869b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd55869c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd55869cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd55869d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efd55869dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efd55869e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd55869ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efd55869f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd55870050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd558700e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd55870170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efd558b5840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1662002411.4674146,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA5C46PqMSI73WsBs/YDyUPuaQ37/Byjk/PibTv0khuz6Lf9K+L5QCPxeBSL+sEi+76/2JPjepjz6eBQI/7qXrO8bYh76jTxO/YxPWvzqskr3v7Yy/8q+aO4GPcL/Zpiy9v9APPzVApj76KfY+uSKgv3cAYr+8bQk/PugPP6Gw4r9nKA++EP8gPwjeMT9znjk/fwq0v79F5D63+gm/Da3Dvk0eqz+ROTY+mk6HvpYDJr+JHri//5aSPmFE0z4KYni/ewq0PiGiwD8jqXC/RUZBvL/QDz81QKY++in2PmSgTD9M1lQ91jtkvcgfGz9yUqk8hItpv9wXiDzFn5E+Fu4fv2Z9DL7sV9U/+QIlP0W3JDwuiZk/u0SGPwlKAj+yM2c8hwiVP4f/iD+OnAI+UoB3PjLjbb/1JII/dD0vv9mNjDu/0A8/NUCmPvop9j65IqC/KNY/v82NsL7HQAg/fZXYvQZLTr8LNpW+Z3uYPXD0zD70k2y/Lha3PWit576xqyM/W6ypvndgvT5gBi4+FPS6vVz1pr+/1ZA+aeynPpe/zT83UXe/D63AvgWX5b7QKMi+v9APPzVApj76KfY+ZKBMP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAH2L/7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBgy7G9AAAAADc14b8AAAAAKfYCvgAAAADTw+E/AAAAANUetj0AAAAAWVriPwAAAABpagU+AAAAAFqk8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkPsO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0JOrPQAAAAB3Leu/AAAAALD/9b0AAAAAo3vyPwAAAABjk709AAAAABwp9T8AAAAA7SYLPgAAAAAevN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZRgTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+q27oAAAAAvaDyvwAAAABpHQe+AAAAADaQ6j8AAAAAysHUPAAAAABnv90/AAAAAFKpzrsAAAAAi3P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1QDTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDlGX69AAAAAO4m2b8AAAAAe2gJPgAAAAD30fg/AAAAAKAyBz0AAAAAbfv+PwAAAAChFAa+AAAAACEr8b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIppK0tyxRmMAWyUTegDjAF0lEdAqNd3rleWwHV9lChoBkdAiKpOvECNj2gHTegDaAhHQKjYL/nW8RN1fZQoaAZHQIfi0W0qpcZoB03oA2gIR0Co2DPRJEpidX2UKGgGR0CHmYJpnHvMaAdN6ANoCEdAqNm29vjwQXV9lChoBkdAgSeuSOinHmgHTegDaAhHQKjko4ZMtbt1fZQoaAZHQIrcgdS2phpoB03oA2gIR0Co5VevhZQpdX2UKGgGR0COCdirDIikaAdN6ANoCEdAqOVbj7yhBnV9lChoBkdAh1nnyEtdzGgHTegDaAhHQKjm4G8mKIl1fZQoaAZHQIlO3KW9lEtoB03oA2gIR0Co8a3cYZVGdX2UKGgGR0COOQ3QUpNLaAdN6ANoCEdAqPJeRkmQbXV9lChoBkdAiQy9Sl3yJGgHTegDaAhHQKjyYhOgxrV1fZQoaAZHQIuNT4etCAtoB03oA2gIR0Co89vAXVLBdX2UKGgGR0CEa5lsguAaaAdN6ANoCEdAqP6fGn4wiHV9lChoBkdAi4RsCcPOIWgHTegDaAhHQKj/RvQ4S6F1fZQoaAZHQIjrZTn7pFFoB03oA2gIR0Co/0unuRcNdX2UKGgGR0CG+WU21lXjaAdN6ANoCEdAqQDHWcz68HV9lChoBkdAjTvS/CZWrGgHTegDaAhHQKkLiKyfL9x1fZQoaAZHQIzF4jB2wFFoB03oA2gIR0CpDDTTnaFmdX2UKGgGR0CJxkWuX/o8aAdN6ANoCEdAqQw4ppeu3nV9lChoBkdAgA+Fo11numgHTegDaAhHQKkNtjEvTPV1fZQoaAZHQItojnNgSe1oB03oA2gIR0CpGJYRmK64dX2UKGgGR0CLX+CvovBaaAdN6ANoCEdAqRlIymALA3V9lChoBkdAjrOyjHn2ZmgHTegDaAhHQKkZTKB/Zuh1fZQoaAZHQIvgdfgJkXloB03oA2gIR0CpGs4lY2bYdX2UKGgGR0CPf1o7FKkEaAdN6ANoCEdAqSWdyNn5BXV9lChoBkdAjbxJYDDCQGgHTegDaAhHQKkmS66J66d1fZQoaAZHQI51riIcinpoB03oA2gIR0CpJk+DWbw0dX2UKGgGR0CNQ0x0MgEEaAdN6ANoCEdAqSfSq+8Gs3V9lChoBkdAjFzXSa3I/GgHTegDaAhHQKk0A0hNdqt1fZQoaAZHQI4C4d8zAN5oB03oA2gIR0CpNK57XxvvdX2UKGgGR0CJDneTFERbaAdN6ANoCEdAqTSyOWBz3nV9lChoBkdAjZA8G1QZXWgHTegDaAhHQKk2LdC3PRl1fZQoaAZHQI2mJkAggYBoB03oA2gIR0CpQOcnVoYfdX2UKGgGR0CLWoScLBsRaAdN6ANoCEdAqUGX2TPjXHV9lChoBkdAkCb91QqI8GgHTegDaAhHQKlBm/L1VYJ1fZQoaAZHQJA6SVJL/S9oB03oA2gIR0CpQxp9iMHbdX2UKGgGR0CPum7aqS5iaAdN6ANoCEdAqU36LQ5WBHV9lChoBkdAjlQheokzGmgHTegDaAhHQKlOsbaRISV1fZQoaAZHQIwybND+irVoB03oA2gIR0CpTrVnM+vAdX2UKGgGR0COBkFr2xptaAdN6ANoCEdAqVA41gpjMHV9lChoBkdAjGJzpxFRYWgHTegDaAhHQKla9ByCFsZ1fZQoaAZHQIY5g/Z/Tb5oB03oA2gIR0CpW5/hddE9dX2UKGgGR0CIyHCE6DGtaAdN6ANoCEdAqVuj655JLHV9lChoBkdAi0Hla0QbuWgHTegDaAhHQKldIY8+zMR1fZQoaAZHQI7NZArxy4poB03oA2gIR0CpZ8n+Q2dedX2UKGgGR0CNI/zxPO6eaAdN6ANoCEdAqWh1xAB1cXV9lChoBkdAitY0WEbo82gHTegDaAhHQKloeXC0ngJ1fZQoaAZHQI78g9FF2FFoB03oA2gIR0CpaffPHDJmdX2UKGgGR0COdvnxJ/XoaAdN6ANoCEdAqXTEZR8+inV9lChoBkdAj0ziaZx7zGgHTegDaAhHQKl1cPiDM/11fZQoaAZHQI4l7RYzSCxoB03oA2gIR0CpdXTZpSJkdX2UKGgGR0CLznjfek57aAdN6ANoCEdAqXb1+qioKnV9lChoBkdAiMe4QarFO2gHTegDaAhHQKmBz26kIop1fZQoaAZHQJAMCyzHCGhoB03oA2gIR0Cpgn642CNCdX2UKGgGR0CJhFq9GqgiaAdN6ANoCEdAqYKCl54W13V9lChoBkdAiy9uPV/c32gHTegDaAhHQKmECjzI3it1fZQoaAZHQI8d5EWqLjxoB03oA2gIR0CpjvM0gr6MdX2UKGgGR0COkXe9Ba9saAdN6ANoCEdAqY+lzhgmZ3V9lChoBkdAjUfLELpiZ2gHTegDaAhHQKmPqd3jdYZ1fZQoaAZHQI6nzsKLKmtoB03oA2gIR0CpkSqPGQ0XdX2UKGgGR0CP08XjU/fPaAdN6ANoCEdAqZvgeT3Zf3V9lChoBkdAkHuPEsJ6Y2gHTegDaAhHQKmciA6Mir11fZQoaAZHQJAA2wX668RoB03oA2gIR0CpnIvwEyLydX2UKGgGR0CPPRsTFl06aAdN6ANoCEdAqZ4K7Ciyp3V9lChoBkdAjbmxyGSIQGgHTegDaAhHQKmovpUPxx11fZQoaAZHQJCZddRiw0RoB03oA2gIR0CpqWh4Uvf1dX2UKGgGR0CPE8U8mrsCaAdN6ANoCEdAqalsVQAMlXV9lChoBkdAjkWMcZLqU2gHTegDaAhHQKmq6ys0YTF1fZQoaAZHQIroaaRZED1oB03oA2gIR0CptbyiVSn+dX2UKGgGR0CL0eocaOxTaAdN6ANoCEdAqbZxEDyOJnV9lChoBkdAi8osRxtHhGgHTegDaAhHQKm2dLHuJDV1fZQoaAZHQILZVF8XvYxoB03oA2gIR0Cpt/SJj2BbdX2UKGgGR0CKzXVMmF8HaAdN6ANoCEdAqcLIMz/IbXV9lChoBkdAi6nSRB/qgWgHTegDaAhHQKnDc84gieN1fZQoaAZHQIRIRwAEMb5oB03oA2gIR0Cpw3eUpuuSdX2UKGgGR0COwUjOcDr7aAdN6ANoCEdAqcT4JC0F83V9lChoBkdAjJTOtW+49WgHTegDaAhHQKnPwLOzIFN1fZQoaAZHQJALpaouPFNoB03oA2gIR0Cp0G9t2s7udX2UKGgGR0CKaYrELpiaaAdN6ANoCEdAqdBzKifxt3V9lChoBkdAjvzTrNW2gGgHTegDaAhHQKnR8KtPpIN1fZQoaAZHQIstMtsenydoB03oA2gIR0Cp3LbnxJ/YdX2UKGgGR0CN9btIkJKKaAdN6ANoCEdAqd1gSrYGuHV9lChoBkdAiiYhOHnEEWgHTegDaAhHQKndZCHh0hh1fZQoaAZHQIOLbf+CK79oB03oA2gIR0Cp3t3G4qgAdX2UKGgGR0CFog5LAYYSaAdN6ANoCEdAqemn8dgfEHV9lChoBkdAj7GzTWoWHmgHTegDaAhHQKnqYZVn27F1fZQoaAZHQJBWh2gWac9oB03oA2gIR0Cp6mV0tAcDdX2UKGgGR0CItaq7ROUMaAdN6ANoCEdAqevrU/fO2XV9lChoBkdAig2HUUfxMGgHTegDaAhHQKn2kE/Spit1fZQoaAZHQI3vsx9G7SRoB03oA2gIR0Cp9z7JfYz0dX2UKGgGR0CO+xbXYlIFaAdN6ANoCEdAqfdCl1r6+HV9lChoBkdAhKR+bmU4aWgHTegDaAhHQKn4ujL0SRN1fZQoaAZHQIXqX0/W1+loB03oA2gIR0CqA3AXuVopdX2UKGgGR0COJqTbnHNpaAdN6ANoCEdAqgQbE74i5nV9lChoBkdAjV42fbsWwmgHTegDaAhHQKoEHvCMxXZ1fZQoaAZHQIqJxgkTpPhoB03oA2gIR0CqBaMK1G9YdX2UKGgGR0CQfyFz+3pfaAdN6ANoCEdAqhBhWeYlY3V9lChoBkdAheCN4A0bcWgHTegDaAhHQKoRCpTdcjZ1fZQoaAZHQIhBU8La24NoB03oA2gIR0CqEQ5TQ3PzdX2UKGgGR0CPzeRFqi48aAdN6ANoCEdAqhKNwvQF93VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ff7bfe8186425befc85861ef6ca74cd7a3f03d956ab21274abff43e7a921d51
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c95a481b8d18ea164c8b07e56aa30eca779c243e64e301bb56b7ce4353fb447f
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd55869b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd55869c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd55869cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd55869d40>", "_build": "<function ActorCriticPolicy._build at 0x7efd55869dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7efd55869e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd55869ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd55869f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd55870050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd558700e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd55870170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd558b5840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662002411.4674146, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA5C46PqMSI73WsBs/YDyUPuaQ37/Byjk/PibTv0khuz6Lf9K+L5QCPxeBSL+sEi+76/2JPjepjz6eBQI/7qXrO8bYh76jTxO/YxPWvzqskr3v7Yy/8q+aO4GPcL/Zpiy9v9APPzVApj76KfY+uSKgv3cAYr+8bQk/PugPP6Gw4r9nKA++EP8gPwjeMT9znjk/fwq0v79F5D63+gm/Da3Dvk0eqz+ROTY+mk6HvpYDJr+JHri//5aSPmFE0z4KYni/ewq0PiGiwD8jqXC/RUZBvL/QDz81QKY++in2PmSgTD9M1lQ91jtkvcgfGz9yUqk8hItpv9wXiDzFn5E+Fu4fv2Z9DL7sV9U/+QIlP0W3JDwuiZk/u0SGPwlKAj+yM2c8hwiVP4f/iD+OnAI+UoB3PjLjbb/1JII/dD0vv9mNjDu/0A8/NUCmPvop9j65IqC/KNY/v82NsL7HQAg/fZXYvQZLTr8LNpW+Z3uYPXD0zD70k2y/Lha3PWit576xqyM/W6ypvndgvT5gBi4+FPS6vVz1pr+/1ZA+aeynPpe/zT83UXe/D63AvgWX5b7QKMi+v9APPzVApj76KfY+ZKBMP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAH2L/7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBgy7G9AAAAADc14b8AAAAAKfYCvgAAAADTw+E/AAAAANUetj0AAAAAWVriPwAAAABpagU+AAAAAFqk8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkPsO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0JOrPQAAAAB3Leu/AAAAALD/9b0AAAAAo3vyPwAAAABjk709AAAAABwp9T8AAAAA7SYLPgAAAAAevN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZRgTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+q27oAAAAAvaDyvwAAAABpHQe+AAAAADaQ6j8AAAAAysHUPAAAAABnv90/AAAAAFKpzrsAAAAAi3P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1QDTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDlGX69AAAAAO4m2b8AAAAAe2gJPgAAAAD30fg/AAAAAKAyBz0AAAAAbfv+PwAAAAChFAa+AAAAACEr8b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIppK0tyxRmMAWyUTegDjAF0lEdAqNd3rleWwHV9lChoBkdAiKpOvECNj2gHTegDaAhHQKjYL/nW8RN1fZQoaAZHQIfi0W0qpcZoB03oA2gIR0Co2DPRJEpidX2UKGgGR0CHmYJpnHvMaAdN6ANoCEdAqNm29vjwQXV9lChoBkdAgSeuSOinHmgHTegDaAhHQKjko4ZMtbt1fZQoaAZHQIrcgdS2phpoB03oA2gIR0Co5VevhZQpdX2UKGgGR0COCdirDIikaAdN6ANoCEdAqOVbj7yhBnV9lChoBkdAh1nnyEtdzGgHTegDaAhHQKjm4G8mKIl1fZQoaAZHQIlO3KW9lEtoB03oA2gIR0Co8a3cYZVGdX2UKGgGR0COOQ3QUpNLaAdN6ANoCEdAqPJeRkmQbXV9lChoBkdAiQy9Sl3yJGgHTegDaAhHQKjyYhOgxrV1fZQoaAZHQIuNT4etCAtoB03oA2gIR0Co89vAXVLBdX2UKGgGR0CEa5lsguAaaAdN6ANoCEdAqP6fGn4wiHV9lChoBkdAi4RsCcPOIWgHTegDaAhHQKj/RvQ4S6F1fZQoaAZHQIjrZTn7pFFoB03oA2gIR0Co/0unuRcNdX2UKGgGR0CG+WU21lXjaAdN6ANoCEdAqQDHWcz68HV9lChoBkdAjTvS/CZWrGgHTegDaAhHQKkLiKyfL9x1fZQoaAZHQIzF4jB2wFFoB03oA2gIR0CpDDTTnaFmdX2UKGgGR0CJxkWuX/o8aAdN6ANoCEdAqQw4ppeu3nV9lChoBkdAgA+Fo11numgHTegDaAhHQKkNtjEvTPV1fZQoaAZHQItojnNgSe1oB03oA2gIR0CpGJYRmK64dX2UKGgGR0CLX+CvovBaaAdN6ANoCEdAqRlIymALA3V9lChoBkdAjrOyjHn2ZmgHTegDaAhHQKkZTKB/Zuh1fZQoaAZHQIvgdfgJkXloB03oA2gIR0CpGs4lY2bYdX2UKGgGR0CPf1o7FKkEaAdN6ANoCEdAqSWdyNn5BXV9lChoBkdAjbxJYDDCQGgHTegDaAhHQKkmS66J66d1fZQoaAZHQI51riIcinpoB03oA2gIR0CpJk+DWbw0dX2UKGgGR0CNQ0x0MgEEaAdN6ANoCEdAqSfSq+8Gs3V9lChoBkdAjFzXSa3I/GgHTegDaAhHQKk0A0hNdqt1fZQoaAZHQI4C4d8zAN5oB03oA2gIR0CpNK57XxvvdX2UKGgGR0CJDneTFERbaAdN6ANoCEdAqTSyOWBz3nV9lChoBkdAjZA8G1QZXWgHTegDaAhHQKk2LdC3PRl1fZQoaAZHQI2mJkAggYBoB03oA2gIR0CpQOcnVoYfdX2UKGgGR0CLWoScLBsRaAdN6ANoCEdAqUGX2TPjXHV9lChoBkdAkCb91QqI8GgHTegDaAhHQKlBm/L1VYJ1fZQoaAZHQJA6SVJL/S9oB03oA2gIR0CpQxp9iMHbdX2UKGgGR0CPum7aqS5iaAdN6ANoCEdAqU36LQ5WBHV9lChoBkdAjlQheokzGmgHTegDaAhHQKlOsbaRISV1fZQoaAZHQIwybND+irVoB03oA2gIR0CpTrVnM+vAdX2UKGgGR0COBkFr2xptaAdN6ANoCEdAqVA41gpjMHV9lChoBkdAjGJzpxFRYWgHTegDaAhHQKla9ByCFsZ1fZQoaAZHQIY5g/Z/Tb5oB03oA2gIR0CpW5/hddE9dX2UKGgGR0CIyHCE6DGtaAdN6ANoCEdAqVuj655JLHV9lChoBkdAi0Hla0QbuWgHTegDaAhHQKldIY8+zMR1fZQoaAZHQI7NZArxy4poB03oA2gIR0CpZ8n+Q2dedX2UKGgGR0CNI/zxPO6eaAdN6ANoCEdAqWh1xAB1cXV9lChoBkdAitY0WEbo82gHTegDaAhHQKloeXC0ngJ1fZQoaAZHQI78g9FF2FFoB03oA2gIR0CpaffPHDJmdX2UKGgGR0COdvnxJ/XoaAdN6ANoCEdAqXTEZR8+inV9lChoBkdAj0ziaZx7zGgHTegDaAhHQKl1cPiDM/11fZQoaAZHQI4l7RYzSCxoB03oA2gIR0CpdXTZpSJkdX2UKGgGR0CLznjfek57aAdN6ANoCEdAqXb1+qioKnV9lChoBkdAiMe4QarFO2gHTegDaAhHQKmBz26kIop1fZQoaAZHQJAMCyzHCGhoB03oA2gIR0Cpgn642CNCdX2UKGgGR0CJhFq9GqgiaAdN6ANoCEdAqYKCl54W13V9lChoBkdAiy9uPV/c32gHTegDaAhHQKmECjzI3it1fZQoaAZHQI8d5EWqLjxoB03oA2gIR0CpjvM0gr6MdX2UKGgGR0COkXe9Ba9saAdN6ANoCEdAqY+lzhgmZ3V9lChoBkdAjUfLELpiZ2gHTegDaAhHQKmPqd3jdYZ1fZQoaAZHQI6nzsKLKmtoB03oA2gIR0CpkSqPGQ0XdX2UKGgGR0CP08XjU/fPaAdN6ANoCEdAqZvgeT3Zf3V9lChoBkdAkHuPEsJ6Y2gHTegDaAhHQKmciA6Mir11fZQoaAZHQJAA2wX668RoB03oA2gIR0CpnIvwEyLydX2UKGgGR0CPPRsTFl06aAdN6ANoCEdAqZ4K7Ciyp3V9lChoBkdAjbmxyGSIQGgHTegDaAhHQKmovpUPxx11fZQoaAZHQJCZddRiw0RoB03oA2gIR0CpqWh4Uvf1dX2UKGgGR0CPE8U8mrsCaAdN6ANoCEdAqalsVQAMlXV9lChoBkdAjkWMcZLqU2gHTegDaAhHQKmq6ys0YTF1fZQoaAZHQIroaaRZED1oB03oA2gIR0CptbyiVSn+dX2UKGgGR0CL0eocaOxTaAdN6ANoCEdAqbZxEDyOJnV9lChoBkdAi8osRxtHhGgHTegDaAhHQKm2dLHuJDV1fZQoaAZHQILZVF8XvYxoB03oA2gIR0Cpt/SJj2BbdX2UKGgGR0CKzXVMmF8HaAdN6ANoCEdAqcLIMz/IbXV9lChoBkdAi6nSRB/qgWgHTegDaAhHQKnDc84gieN1fZQoaAZHQIRIRwAEMb5oB03oA2gIR0Cpw3eUpuuSdX2UKGgGR0COwUjOcDr7aAdN6ANoCEdAqcT4JC0F83V9lChoBkdAjJTOtW+49WgHTegDaAhHQKnPwLOzIFN1fZQoaAZHQJALpaouPFNoB03oA2gIR0Cp0G9t2s7udX2UKGgGR0CKaYrELpiaaAdN6ANoCEdAqdBzKifxt3V9lChoBkdAjvzTrNW2gGgHTegDaAhHQKnR8KtPpIN1fZQoaAZHQIstMtsenydoB03oA2gIR0Cp3LbnxJ/YdX2UKGgGR0CN9btIkJKKaAdN6ANoCEdAqd1gSrYGuHV9lChoBkdAiiYhOHnEEWgHTegDaAhHQKndZCHh0hh1fZQoaAZHQIOLbf+CK79oB03oA2gIR0Cp3t3G4qgAdX2UKGgGR0CFog5LAYYSaAdN6ANoCEdAqemn8dgfEHV9lChoBkdAj7GzTWoWHmgHTegDaAhHQKnqYZVn27F1fZQoaAZHQJBWh2gWac9oB03oA2gIR0Cp6mV0tAcDdX2UKGgGR0CItaq7ROUMaAdN6ANoCEdAqevrU/fO2XV9lChoBkdAig2HUUfxMGgHTegDaAhHQKn2kE/Spit1fZQoaAZHQI3vsx9G7SRoB03oA2gIR0Cp9z7JfYz0dX2UKGgGR0CO+xbXYlIFaAdN6ANoCEdAqfdCl1r6+HV9lChoBkdAhKR+bmU4aWgHTegDaAhHQKn4ujL0SRN1fZQoaAZHQIXqX0/W1+loB03oA2gIR0CqA3AXuVopdX2UKGgGR0COJqTbnHNpaAdN6ANoCEdAqgQbE74i5nV9lChoBkdAjV42fbsWwmgHTegDaAhHQKoEHvCMxXZ1fZQoaAZHQIqJxgkTpPhoB03oA2gIR0CqBaMK1G9YdX2UKGgGR0CQfyFz+3pfaAdN6ANoCEdAqhBhWeYlY3V9lChoBkdAheCN4A0bcWgHTegDaAhHQKoRCpTdcjZ1fZQoaAZHQIhBU8La24NoB03oA2gIR0CqEQ5TQ3PzdX2UKGgGR0CPzeRFqi48aAdN6ANoCEdAqhKNwvQF93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (873 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 836.4352031249553, "std_reward": 139.45597165324492, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-01T04:20:19.879468"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd85846b876645e4c4a8cb7dcaf31daadceddbf217670c4649b8979936dec284
|
3 |
+
size 2763
|