File size: 1,407 Bytes
56a31c1
 
 
 
 
 
 
 
 
b5bf292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: mit
datasets:
- mozilla-foundation/common_voice_17_0
language:
- ru
base_model:
- dvislobokov/whisper-large-v3-turbo-russian
pipeline_tag: automatic-speech-recognition
---

## Example of use this model with faster-whisper

```python
import io
import json
import logging
import sys
import time
from datetime import datetime
from faster_whisper import WhisperModel
from pydub import AudioSegment

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('faster-whisper.log'),
        logging.StreamHandler(sys.stdout)
    ]
)
model = WhisperModel("/path/to/dvislobokov/faster-whisper-large-v3-turbo-russian", "cpu")

audio = AudioSegment.from_wav("ezyZip.wav")
chunk_length = 30 * 1000 # in milliseconds
chunks = [audio[i:i + chunk_length] for i in range(0, len(audio), chunk_length)]


logging.info(f'Start transcribe at {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
start = time.time()

text = []
for i, chunk in enumerate(chunks):
    buffer = io.BytesIO()
    chunk.export(buffer, format="wav")
    segments, info = model.transcribe(buffer, language="ru")
    text.append("".join(segment.text for segment in segments))
end = time.time()
logging.info(f'Finish transcribe at {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
logging.info(f'Total time: {end - start}')
logging.info(f'Text: {text}')
```