--- license: mit datasets: - mozilla-foundation/common_voice_17_0 language: - ru base_model: - dvislobokov/whisper-large-v3-turbo-russian pipeline_tag: automatic-speech-recognition --- ## Example of use this model with faster-whisper ```python import io import json import logging import sys import time from datetime import datetime from faster_whisper import WhisperModel from pydub import AudioSegment logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('faster-whisper.log'), logging.StreamHandler(sys.stdout) ] ) model = WhisperModel("/path/to/dvislobokov/faster-whisper-large-v3-turbo-russian", "cpu") audio = AudioSegment.from_wav("ezyZip.wav") chunk_length = 30 * 1000 # in milliseconds chunks = [audio[i:i + chunk_length] for i in range(0, len(audio), chunk_length)] logging.info(f'Start transcribe at {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}') start = time.time() text = [] for i, chunk in enumerate(chunks): buffer = io.BytesIO() chunk.export(buffer, format="wav") segments, info = model.transcribe(buffer, language="ru") text.append("".join(segment.text for segment in segments)) end = time.time() logging.info(f'Finish transcribe at {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}') logging.info(f'Total time: {end - start}') logging.info(f'Text: {text}') ```