--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-mulder-v-scully-colab results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-tiny-patch4-window7-224-mulder-v-scully-colab This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3652 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6105 | 0.75 | | No log | 2.0 | 2 | 0.6975 | 0.5 | | No log | 3.0 | 3 | 0.8309 | 0.25 | | No log | 4.0 | 4 | 0.7604 | 0.5 | | No log | 5.0 | 5 | 0.6327 | 0.5 | | No log | 6.0 | 6 | 0.5101 | 0.75 | | No log | 7.0 | 7 | 0.4148 | 0.75 | | No log | 8.0 | 8 | 0.3652 | 1.0 | | No log | 9.0 | 9 | 0.3433 | 1.0 | | 0.0984 | 10.0 | 10 | 0.3231 | 1.0 | | 0.0984 | 11.0 | 11 | 0.3071 | 1.0 | | 0.0984 | 12.0 | 12 | 0.3047 | 1.0 | | 0.0984 | 13.0 | 13 | 0.3189 | 0.75 | | 0.0984 | 14.0 | 14 | 0.3437 | 0.75 | | 0.0984 | 15.0 | 15 | 0.3701 | 0.75 | | 0.0984 | 16.0 | 16 | 0.3959 | 0.75 | | 0.0984 | 17.0 | 17 | 0.4167 | 0.75 | | 0.0984 | 18.0 | 18 | 0.4190 | 0.75 | | 0.0984 | 19.0 | 19 | 0.4154 | 0.75 | | 0.0632 | 20.0 | 20 | 0.4114 | 0.75 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3