--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: dwiedarioo/vit-base-patch16-224-in21k-datascience2 results: [] --- # dwiedarioo/vit-base-patch16-224-in21k-datascience2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0109 - Train Accuracy: 0.9997 - Train Top-3-accuracy: 1.0 - Validation Loss: 0.0242 - Validation Accuracy: 0.9948 - Validation Top-3-accuracy: 1.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 2880, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.3365 | 0.9206 | 0.9902 | 0.1057 | 0.9809 | 1.0 | 0 | | 0.0657 | 0.9891 | 0.9999 | 0.0509 | 0.9902 | 1.0 | 1 | | 0.0252 | 0.9980 | 1.0 | 0.0314 | 0.9945 | 1.0 | 2 | | 0.0146 | 0.9992 | 1.0 | 0.0260 | 0.9948 | 1.0 | 3 | | 0.0109 | 0.9997 | 1.0 | 0.0242 | 0.9948 | 1.0 | 4 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1