Commit
·
28c6190
1
Parent(s):
c505505
add LGM
Browse files- lgm/config.json +4 -0
- lgm/diffusion_pytorch_model.safetensors +3 -0
- lgm/lgm.py +808 -0
- model_index.json +11 -31
- pipeline.py +30 -2
lgm/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "LGM",
|
3 |
+
"_diffusers_version": "0.25.0"
|
4 |
+
}
|
lgm/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79e5160e1fc45559515579a7e41ffc22606cf41c3ed8581b09dae9b4ce437099
|
3 |
+
size 830126192
|
lgm/lgm.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
from functools import partial
|
4 |
+
from typing import Literal, Tuple
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from diff_gaussian_rasterization import (
|
10 |
+
GaussianRasterizationSettings,
|
11 |
+
GaussianRasterizer,
|
12 |
+
)
|
13 |
+
from diffusers import ConfigMixin, ModelMixin
|
14 |
+
from torch import Tensor, nn
|
15 |
+
|
16 |
+
|
17 |
+
def look_at(campos):
|
18 |
+
forward_vector = -campos / np.linalg.norm(campos, axis=-1)
|
19 |
+
up_vector = np.array([0, 1, 0], dtype=np.float32)
|
20 |
+
right_vector = np.cross(up_vector, forward_vector)
|
21 |
+
up_vector = np.cross(forward_vector, right_vector)
|
22 |
+
R = np.stack([right_vector, up_vector, forward_vector], axis=-1)
|
23 |
+
return R
|
24 |
+
|
25 |
+
|
26 |
+
def orbit_camera(elevation, azimuth, radius=1):
|
27 |
+
elevation = np.deg2rad(elevation)
|
28 |
+
azimuth = np.deg2rad(azimuth)
|
29 |
+
x = radius * np.cos(elevation) * np.sin(azimuth)
|
30 |
+
y = -radius * np.sin(elevation)
|
31 |
+
z = radius * np.cos(elevation) * np.cos(azimuth)
|
32 |
+
campos = np.array([x, y, z])
|
33 |
+
T = np.eye(4, dtype=np.float32)
|
34 |
+
T[:3, :3] = look_at(campos)
|
35 |
+
T[:3, 3] = campos
|
36 |
+
return T
|
37 |
+
|
38 |
+
|
39 |
+
def get_rays(pose, h, w, fovy, opengl=True):
|
40 |
+
x, y = torch.meshgrid(
|
41 |
+
torch.arange(w, device=pose.device),
|
42 |
+
torch.arange(h, device=pose.device),
|
43 |
+
indexing="xy",
|
44 |
+
)
|
45 |
+
x = x.flatten()
|
46 |
+
y = y.flatten()
|
47 |
+
|
48 |
+
cx = w * 0.5
|
49 |
+
cy = h * 0.5
|
50 |
+
|
51 |
+
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
|
52 |
+
|
53 |
+
camera_dirs = F.pad(
|
54 |
+
torch.stack(
|
55 |
+
[
|
56 |
+
(x - cx + 0.5) / focal,
|
57 |
+
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
|
58 |
+
],
|
59 |
+
dim=-1,
|
60 |
+
),
|
61 |
+
(0, 1),
|
62 |
+
value=(-1.0 if opengl else 1.0),
|
63 |
+
)
|
64 |
+
|
65 |
+
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)
|
66 |
+
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d)
|
67 |
+
|
68 |
+
rays_o = rays_o.view(h, w, 3)
|
69 |
+
rays_d = F.normalize(rays_d, dim=-1).view(h, w, 3)
|
70 |
+
|
71 |
+
return rays_o, rays_d
|
72 |
+
|
73 |
+
|
74 |
+
class GaussianRenderer:
|
75 |
+
def __init__(self, fovy, output_size):
|
76 |
+
self.output_size = output_size
|
77 |
+
|
78 |
+
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
|
79 |
+
|
80 |
+
zfar = 2.5
|
81 |
+
znear = 0.1
|
82 |
+
self.tan_half_fov = np.tan(0.5 * np.deg2rad(fovy))
|
83 |
+
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
|
84 |
+
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
|
85 |
+
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
|
86 |
+
self.proj_matrix[2, 2] = (zfar + znear) / (zfar - znear)
|
87 |
+
self.proj_matrix[3, 2] = -(zfar * znear) / (zfar - znear)
|
88 |
+
self.proj_matrix[2, 3] = 1
|
89 |
+
|
90 |
+
def render(
|
91 |
+
self,
|
92 |
+
gaussians,
|
93 |
+
cam_view,
|
94 |
+
cam_view_proj,
|
95 |
+
cam_pos,
|
96 |
+
bg_color=None,
|
97 |
+
scale_modifier=1,
|
98 |
+
):
|
99 |
+
device = gaussians.device
|
100 |
+
B, V = cam_view.shape[:2]
|
101 |
+
|
102 |
+
images = []
|
103 |
+
alphas = []
|
104 |
+
for b in range(B):
|
105 |
+
|
106 |
+
means3D = gaussians[b, :, 0:3].contiguous().float()
|
107 |
+
opacity = gaussians[b, :, 3:4].contiguous().float()
|
108 |
+
scales = gaussians[b, :, 4:7].contiguous().float()
|
109 |
+
rotations = gaussians[b, :, 7:11].contiguous().float()
|
110 |
+
rgbs = gaussians[b, :, 11:].contiguous().float()
|
111 |
+
|
112 |
+
for v in range(V):
|
113 |
+
view_matrix = cam_view[b, v].float()
|
114 |
+
view_proj_matrix = cam_view_proj[b, v].float()
|
115 |
+
campos = cam_pos[b, v].float()
|
116 |
+
|
117 |
+
raster_settings = GaussianRasterizationSettings(
|
118 |
+
image_height=self.output_size,
|
119 |
+
image_width=self.output_size,
|
120 |
+
tanfovx=self.tan_half_fov,
|
121 |
+
tanfovy=self.tan_half_fov,
|
122 |
+
bg=self.bg_color if bg_color is None else bg_color,
|
123 |
+
scale_modifier=scale_modifier,
|
124 |
+
viewmatrix=view_matrix,
|
125 |
+
projmatrix=view_proj_matrix,
|
126 |
+
sh_degree=0,
|
127 |
+
campos=campos,
|
128 |
+
prefiltered=False,
|
129 |
+
debug=False,
|
130 |
+
)
|
131 |
+
|
132 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
133 |
+
|
134 |
+
rendered_image, _, _, rendered_alpha = rasterizer(
|
135 |
+
means3D=means3D,
|
136 |
+
means2D=torch.zeros_like(
|
137 |
+
means3D, dtype=torch.float32, device=device
|
138 |
+
),
|
139 |
+
shs=None,
|
140 |
+
colors_precomp=rgbs,
|
141 |
+
opacities=opacity,
|
142 |
+
scales=scales,
|
143 |
+
rotations=rotations,
|
144 |
+
cov3D_precomp=None,
|
145 |
+
)
|
146 |
+
|
147 |
+
rendered_image = rendered_image.clamp(0, 1)
|
148 |
+
|
149 |
+
images.append(rendered_image)
|
150 |
+
alphas.append(rendered_alpha)
|
151 |
+
|
152 |
+
images = torch.stack(images, dim=0).view(
|
153 |
+
B, V, 3, self.output_size, self.output_size
|
154 |
+
)
|
155 |
+
alphas = torch.stack(alphas, dim=0).view(
|
156 |
+
B, V, 1, self.output_size, self.output_size
|
157 |
+
)
|
158 |
+
|
159 |
+
return {"image": images, "alpha": alphas}
|
160 |
+
|
161 |
+
def save_ply(self, gaussians, path):
|
162 |
+
assert gaussians.shape[0] == 1, "only support batch size 1"
|
163 |
+
|
164 |
+
from plyfile import PlyData, PlyElement
|
165 |
+
|
166 |
+
means3D = gaussians[0, :, 0:3].contiguous().float()
|
167 |
+
opacity = gaussians[0, :, 3:4].contiguous().float()
|
168 |
+
scales = gaussians[0, :, 4:7].contiguous().float()
|
169 |
+
rotations = gaussians[0, :, 7:11].contiguous().float()
|
170 |
+
shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float()
|
171 |
+
|
172 |
+
mask = opacity.squeeze(-1) >= 0.005
|
173 |
+
means3D = means3D[mask]
|
174 |
+
opacity = opacity[mask]
|
175 |
+
scales = scales[mask]
|
176 |
+
rotations = rotations[mask]
|
177 |
+
shs = shs[mask]
|
178 |
+
|
179 |
+
opacity = opacity.clamp(1e-6, 1 - 1e-6)
|
180 |
+
opacity = torch.log(opacity / (1 - opacity))
|
181 |
+
scales = torch.log(scales + 1e-8)
|
182 |
+
shs = (shs - 0.5) / 0.28209479177387814
|
183 |
+
|
184 |
+
xyzs = means3D.detach().cpu().numpy()
|
185 |
+
f_dc = (
|
186 |
+
shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
187 |
+
)
|
188 |
+
opacities = opacity.detach().cpu().numpy()
|
189 |
+
scales = scales.detach().cpu().numpy()
|
190 |
+
rotations = rotations.detach().cpu().numpy()
|
191 |
+
|
192 |
+
h = ["x", "y", "z"]
|
193 |
+
for i in range(f_dc.shape[1]):
|
194 |
+
h.append("f_dc_{}".format(i))
|
195 |
+
h.append("opacity")
|
196 |
+
for i in range(scales.shape[1]):
|
197 |
+
h.append("scale_{}".format(i))
|
198 |
+
for i in range(rotations.shape[1]):
|
199 |
+
h.append("rot_{}".format(i))
|
200 |
+
|
201 |
+
dtype_full = [(attribute, "f4") for attribute in h]
|
202 |
+
|
203 |
+
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
|
204 |
+
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
|
205 |
+
elements[:] = list(map(tuple, attributes))
|
206 |
+
el = PlyElement.describe(elements, "vertex")
|
207 |
+
|
208 |
+
PlyData([el]).write(path)
|
209 |
+
|
210 |
+
|
211 |
+
class LGM(ModelMixin, ConfigMixin):
|
212 |
+
def __init__(self):
|
213 |
+
super().__init__()
|
214 |
+
|
215 |
+
self.input_size = 256
|
216 |
+
self.splat_size = 128
|
217 |
+
self.output_size = 512
|
218 |
+
self.radius = 1.5
|
219 |
+
self.fovy = 49.1
|
220 |
+
|
221 |
+
self.unet = UNet(
|
222 |
+
9,
|
223 |
+
14,
|
224 |
+
down_channels=(64, 128, 256, 512, 1024, 1024),
|
225 |
+
down_attention=(False, False, False, True, True, True),
|
226 |
+
mid_attention=True,
|
227 |
+
up_channels=(1024, 1024, 512, 256, 128),
|
228 |
+
up_attention=(True, True, True, False, False),
|
229 |
+
)
|
230 |
+
|
231 |
+
self.conv = nn.Conv2d(14, 14, kernel_size=1)
|
232 |
+
self.gs = GaussianRenderer(self.fovy, self.output_size)
|
233 |
+
|
234 |
+
self.pos_act = lambda x: x.clamp(-1, 1)
|
235 |
+
self.scale_act = lambda x: 0.1 * F.softplus(x)
|
236 |
+
self.opacity_act = lambda x: torch.sigmoid(x)
|
237 |
+
self.rot_act = F.normalize
|
238 |
+
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5
|
239 |
+
|
240 |
+
def prepare_default_rays(self, device, elevation=0):
|
241 |
+
cam_poses = np.stack(
|
242 |
+
[
|
243 |
+
orbit_camera(elevation, 0, radius=self.radius),
|
244 |
+
orbit_camera(elevation, 90, radius=self.radius),
|
245 |
+
orbit_camera(elevation, 180, radius=self.radius),
|
246 |
+
orbit_camera(elevation, 270, radius=self.radius),
|
247 |
+
],
|
248 |
+
axis=0,
|
249 |
+
)
|
250 |
+
cam_poses = torch.from_numpy(cam_poses)
|
251 |
+
|
252 |
+
rays_embeddings = []
|
253 |
+
for i in range(cam_poses.shape[0]):
|
254 |
+
rays_o, rays_d = get_rays(
|
255 |
+
cam_poses[i], self.input_size, self.input_size, self.fovy
|
256 |
+
)
|
257 |
+
rays_plucker = torch.cat(
|
258 |
+
[torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1
|
259 |
+
)
|
260 |
+
rays_embeddings.append(rays_plucker)
|
261 |
+
|
262 |
+
rays_embeddings = (
|
263 |
+
torch.stack(rays_embeddings, dim=0)
|
264 |
+
.permute(0, 3, 1, 2)
|
265 |
+
.contiguous()
|
266 |
+
.to(device)
|
267 |
+
)
|
268 |
+
|
269 |
+
return rays_embeddings
|
270 |
+
|
271 |
+
def forward(self, images):
|
272 |
+
B, V, C, H, W = images.shape
|
273 |
+
images = images.view(B * V, C, H, W)
|
274 |
+
|
275 |
+
x = self.unet(images)
|
276 |
+
x = self.conv(x)
|
277 |
+
|
278 |
+
x = x.reshape(B, 4, 14, self.splat_size, self.splat_size)
|
279 |
+
|
280 |
+
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
|
281 |
+
|
282 |
+
pos = self.pos_act(x[..., 0:3])
|
283 |
+
opacity = self.opacity_act(x[..., 3:4])
|
284 |
+
scale = self.scale_act(x[..., 4:7])
|
285 |
+
rotation = self.rot_act(x[..., 7:11])
|
286 |
+
rgbs = self.rgb_act(x[..., 11:])
|
287 |
+
|
288 |
+
q = torch.tensor([0, 0, 1, 0], dtype=pos.dtype, device=pos.device)
|
289 |
+
R = torch.tensor(
|
290 |
+
[
|
291 |
+
[-1, 0, 0],
|
292 |
+
[0, -1, 0],
|
293 |
+
[0, 0, 1],
|
294 |
+
],
|
295 |
+
dtype=pos.dtype,
|
296 |
+
device=pos.device,
|
297 |
+
)
|
298 |
+
|
299 |
+
pos = torch.matmul(pos, R.T)
|
300 |
+
|
301 |
+
def multiply_quat(q1, q2):
|
302 |
+
w1, x1, y1, z1 = q1.unbind(-1)
|
303 |
+
w2, x2, y2, z2 = q2.unbind(-1)
|
304 |
+
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
|
305 |
+
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
|
306 |
+
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
|
307 |
+
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
|
308 |
+
return torch.stack([w, x, y, z], dim=-1)
|
309 |
+
|
310 |
+
for i in range(B):
|
311 |
+
rotation[i, :] = multiply_quat(q, rotation[i, :])
|
312 |
+
|
313 |
+
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1)
|
314 |
+
|
315 |
+
return gaussians
|
316 |
+
|
317 |
+
|
318 |
+
# =============================================================================
|
319 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
320 |
+
#
|
321 |
+
# This source code is licensed under the Apache License, Version 2.0
|
322 |
+
# found in the LICENSE file in the root directory of this source tree.
|
323 |
+
|
324 |
+
# References:
|
325 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
326 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
327 |
+
# =============================================================================
|
328 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
329 |
+
try:
|
330 |
+
if XFORMERS_ENABLED:
|
331 |
+
from xformers.ops import memory_efficient_attention, unbind
|
332 |
+
|
333 |
+
XFORMERS_AVAILABLE = True
|
334 |
+
warnings.warn("xFormers is available (Attention)")
|
335 |
+
else:
|
336 |
+
warnings.warn("xFormers is disabled (Attention)")
|
337 |
+
raise ImportError
|
338 |
+
except ImportError:
|
339 |
+
XFORMERS_AVAILABLE = False
|
340 |
+
warnings.warn("xFormers is not available (Attention)")
|
341 |
+
|
342 |
+
|
343 |
+
class Attention(nn.Module):
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
dim: int,
|
347 |
+
num_heads: int = 8,
|
348 |
+
qkv_bias: bool = False,
|
349 |
+
proj_bias: bool = True,
|
350 |
+
attn_drop: float = 0.0,
|
351 |
+
proj_drop: float = 0.0,
|
352 |
+
) -> None:
|
353 |
+
super().__init__()
|
354 |
+
self.num_heads = num_heads
|
355 |
+
head_dim = dim // num_heads
|
356 |
+
self.scale = head_dim**-0.5
|
357 |
+
|
358 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
359 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
360 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
361 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
362 |
+
|
363 |
+
def forward(self, x: Tensor) -> Tensor:
|
364 |
+
B, N, C = x.shape
|
365 |
+
qkv = (
|
366 |
+
self.qkv(x)
|
367 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
368 |
+
.permute(2, 0, 3, 1, 4)
|
369 |
+
)
|
370 |
+
|
371 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
372 |
+
attn = q @ k.transpose(-2, -1)
|
373 |
+
|
374 |
+
attn = attn.softmax(dim=-1)
|
375 |
+
attn = self.attn_drop(attn)
|
376 |
+
|
377 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
378 |
+
x = self.proj(x)
|
379 |
+
x = self.proj_drop(x)
|
380 |
+
return x
|
381 |
+
|
382 |
+
|
383 |
+
class MemEffAttention(Attention):
|
384 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
385 |
+
if not XFORMERS_AVAILABLE:
|
386 |
+
if attn_bias is not None:
|
387 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
388 |
+
return super().forward(x)
|
389 |
+
|
390 |
+
B, N, C = x.shape
|
391 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
392 |
+
|
393 |
+
q, k, v = unbind(qkv, 2)
|
394 |
+
|
395 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
396 |
+
x = x.reshape([B, N, C])
|
397 |
+
|
398 |
+
x = self.proj(x)
|
399 |
+
x = self.proj_drop(x)
|
400 |
+
return x
|
401 |
+
|
402 |
+
|
403 |
+
class CrossAttention(nn.Module):
|
404 |
+
def __init__(
|
405 |
+
self,
|
406 |
+
dim: int,
|
407 |
+
dim_q: int,
|
408 |
+
dim_k: int,
|
409 |
+
dim_v: int,
|
410 |
+
num_heads: int = 8,
|
411 |
+
qkv_bias: bool = False,
|
412 |
+
proj_bias: bool = True,
|
413 |
+
attn_drop: float = 0.0,
|
414 |
+
proj_drop: float = 0.0,
|
415 |
+
) -> None:
|
416 |
+
super().__init__()
|
417 |
+
self.dim = dim
|
418 |
+
self.num_heads = num_heads
|
419 |
+
head_dim = dim // num_heads
|
420 |
+
self.scale = head_dim**-0.5
|
421 |
+
|
422 |
+
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
|
423 |
+
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
|
424 |
+
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
|
425 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
426 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
427 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
428 |
+
|
429 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
430 |
+
B, N, _ = q.shape
|
431 |
+
M = k.shape[1]
|
432 |
+
|
433 |
+
q = self.scale * self.to_q(q).reshape(
|
434 |
+
B, N, self.num_heads, self.dim // self.num_heads
|
435 |
+
).permute(0, 2, 1, 3)
|
436 |
+
k = (
|
437 |
+
self.to_k(k)
|
438 |
+
.reshape(B, M, self.num_heads, self.dim // self.num_heads)
|
439 |
+
.permute(0, 2, 1, 3)
|
440 |
+
)
|
441 |
+
v = (
|
442 |
+
self.to_v(v)
|
443 |
+
.reshape(B, M, self.num_heads, self.dim // self.num_heads)
|
444 |
+
.permute(0, 2, 1, 3)
|
445 |
+
)
|
446 |
+
|
447 |
+
attn = q @ k.transpose(-2, -1)
|
448 |
+
|
449 |
+
attn = attn.softmax(dim=-1)
|
450 |
+
attn = self.attn_drop(attn)
|
451 |
+
|
452 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
453 |
+
x = self.proj(x)
|
454 |
+
x = self.proj_drop(x)
|
455 |
+
return x
|
456 |
+
|
457 |
+
|
458 |
+
class MemEffCrossAttention(CrossAttention):
|
459 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
|
460 |
+
if not XFORMERS_AVAILABLE:
|
461 |
+
if attn_bias is not None:
|
462 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
463 |
+
return super().forward(q, k, v)
|
464 |
+
|
465 |
+
B, N, _ = q.shape
|
466 |
+
M = k.shape[1]
|
467 |
+
|
468 |
+
q = self.scale * self.to_q(q).reshape(
|
469 |
+
B, N, self.num_heads, self.dim // self.num_heads
|
470 |
+
)
|
471 |
+
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads)
|
472 |
+
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads)
|
473 |
+
|
474 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
475 |
+
x = x.reshape(B, N, -1)
|
476 |
+
|
477 |
+
x = self.proj(x)
|
478 |
+
x = self.proj_drop(x)
|
479 |
+
return x
|
480 |
+
|
481 |
+
|
482 |
+
# =============================================================================
|
483 |
+
# End of xFormers
|
484 |
+
|
485 |
+
|
486 |
+
class MVAttention(nn.Module):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
dim: int,
|
490 |
+
num_heads: int = 8,
|
491 |
+
qkv_bias: bool = False,
|
492 |
+
proj_bias: bool = True,
|
493 |
+
attn_drop: float = 0.0,
|
494 |
+
proj_drop: float = 0.0,
|
495 |
+
groups: int = 32,
|
496 |
+
eps: float = 1e-5,
|
497 |
+
residual: bool = True,
|
498 |
+
skip_scale: float = 1,
|
499 |
+
num_frames: int = 4,
|
500 |
+
):
|
501 |
+
super().__init__()
|
502 |
+
|
503 |
+
self.residual = residual
|
504 |
+
self.skip_scale = skip_scale
|
505 |
+
self.num_frames = num_frames
|
506 |
+
|
507 |
+
self.norm = nn.GroupNorm(
|
508 |
+
num_groups=groups, num_channels=dim, eps=eps, affine=True
|
509 |
+
)
|
510 |
+
self.attn = MemEffAttention(
|
511 |
+
dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop
|
512 |
+
)
|
513 |
+
|
514 |
+
def forward(self, x):
|
515 |
+
BV, C, H, W = x.shape
|
516 |
+
B = BV // self.num_frames
|
517 |
+
|
518 |
+
res = x
|
519 |
+
x = self.norm(x)
|
520 |
+
|
521 |
+
x = (
|
522 |
+
x.reshape(B, self.num_frames, C, H, W)
|
523 |
+
.permute(0, 1, 3, 4, 2)
|
524 |
+
.reshape(B, -1, C)
|
525 |
+
)
|
526 |
+
x = self.attn(x)
|
527 |
+
x = (
|
528 |
+
x.reshape(B, self.num_frames, H, W, C)
|
529 |
+
.permute(0, 1, 4, 2, 3)
|
530 |
+
.reshape(BV, C, H, W)
|
531 |
+
)
|
532 |
+
|
533 |
+
if self.residual:
|
534 |
+
x = (x + res) * self.skip_scale
|
535 |
+
return x
|
536 |
+
|
537 |
+
|
538 |
+
class ResnetBlock(nn.Module):
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
in_channels: int,
|
542 |
+
out_channels: int,
|
543 |
+
resample: Literal["default", "up", "down"] = "default",
|
544 |
+
groups: int = 32,
|
545 |
+
eps: float = 1e-5,
|
546 |
+
skip_scale: float = 1,
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
|
550 |
+
self.in_channels = in_channels
|
551 |
+
self.out_channels = out_channels
|
552 |
+
self.skip_scale = skip_scale
|
553 |
+
|
554 |
+
self.norm1 = nn.GroupNorm(
|
555 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
556 |
+
)
|
557 |
+
self.conv1 = nn.Conv2d(
|
558 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
559 |
+
)
|
560 |
+
|
561 |
+
self.norm2 = nn.GroupNorm(
|
562 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
563 |
+
)
|
564 |
+
self.conv2 = nn.Conv2d(
|
565 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
566 |
+
)
|
567 |
+
|
568 |
+
self.act = F.silu
|
569 |
+
|
570 |
+
self.resample = None
|
571 |
+
if resample == "up":
|
572 |
+
self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
573 |
+
elif resample == "down":
|
574 |
+
self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
|
575 |
+
|
576 |
+
self.shortcut = nn.Identity()
|
577 |
+
if self.in_channels != self.out_channels:
|
578 |
+
self.shortcut = nn.Conv2d(
|
579 |
+
in_channels, out_channels, kernel_size=1, bias=True
|
580 |
+
)
|
581 |
+
|
582 |
+
def forward(self, x):
|
583 |
+
res = x
|
584 |
+
x = self.norm1(x)
|
585 |
+
x = self.act(x)
|
586 |
+
if self.resample:
|
587 |
+
res = self.resample(res)
|
588 |
+
x = self.resample(x)
|
589 |
+
x = self.conv1(x)
|
590 |
+
x = self.norm2(x)
|
591 |
+
x = self.act(x)
|
592 |
+
x = self.conv2(x)
|
593 |
+
x = (x + self.shortcut(res)) * self.skip_scale
|
594 |
+
return x
|
595 |
+
|
596 |
+
|
597 |
+
class DownBlock(nn.Module):
|
598 |
+
def __init__(
|
599 |
+
self,
|
600 |
+
in_channels: int,
|
601 |
+
out_channels: int,
|
602 |
+
num_layers: int = 1,
|
603 |
+
downsample: bool = True,
|
604 |
+
attention: bool = True,
|
605 |
+
attention_heads: int = 16,
|
606 |
+
skip_scale: float = 1,
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
|
610 |
+
nets = []
|
611 |
+
attns = []
|
612 |
+
for i in range(num_layers):
|
613 |
+
in_channels = in_channels if i == 0 else out_channels
|
614 |
+
nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
|
615 |
+
if attention:
|
616 |
+
attns.append(
|
617 |
+
MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
|
618 |
+
)
|
619 |
+
else:
|
620 |
+
attns.append(None)
|
621 |
+
self.nets = nn.ModuleList(nets)
|
622 |
+
self.attns = nn.ModuleList(attns)
|
623 |
+
|
624 |
+
self.downsample = None
|
625 |
+
if downsample:
|
626 |
+
self.downsample = nn.Conv2d(
|
627 |
+
out_channels, out_channels, kernel_size=3, stride=2, padding=1
|
628 |
+
)
|
629 |
+
|
630 |
+
def forward(self, x):
|
631 |
+
xs = []
|
632 |
+
for attn, net in zip(self.attns, self.nets):
|
633 |
+
x = net(x)
|
634 |
+
if attn:
|
635 |
+
x = attn(x)
|
636 |
+
xs.append(x)
|
637 |
+
if self.downsample:
|
638 |
+
x = self.downsample(x)
|
639 |
+
xs.append(x)
|
640 |
+
return x, xs
|
641 |
+
|
642 |
+
|
643 |
+
class MidBlock(nn.Module):
|
644 |
+
def __init__(
|
645 |
+
self,
|
646 |
+
in_channels: int,
|
647 |
+
num_layers: int = 1,
|
648 |
+
attention: bool = True,
|
649 |
+
attention_heads: int = 16,
|
650 |
+
skip_scale: float = 1,
|
651 |
+
):
|
652 |
+
super().__init__()
|
653 |
+
|
654 |
+
nets = []
|
655 |
+
attns = []
|
656 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
657 |
+
for _ in range(num_layers):
|
658 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
659 |
+
if attention:
|
660 |
+
attns.append(
|
661 |
+
MVAttention(in_channels, attention_heads, skip_scale=skip_scale)
|
662 |
+
)
|
663 |
+
else:
|
664 |
+
attns.append(None)
|
665 |
+
self.nets = nn.ModuleList(nets)
|
666 |
+
self.attns = nn.ModuleList(attns)
|
667 |
+
|
668 |
+
def forward(self, x):
|
669 |
+
x = self.nets[0](x)
|
670 |
+
for attn, net in zip(self.attns, self.nets[1:]):
|
671 |
+
if attn:
|
672 |
+
x = attn(x)
|
673 |
+
x = net(x)
|
674 |
+
return x
|
675 |
+
|
676 |
+
|
677 |
+
class UpBlock(nn.Module):
|
678 |
+
def __init__(
|
679 |
+
self,
|
680 |
+
in_channels: int,
|
681 |
+
prev_out_channels: int,
|
682 |
+
out_channels: int,
|
683 |
+
num_layers: int = 1,
|
684 |
+
upsample: bool = True,
|
685 |
+
attention: bool = True,
|
686 |
+
attention_heads: int = 16,
|
687 |
+
skip_scale: float = 1,
|
688 |
+
):
|
689 |
+
super().__init__()
|
690 |
+
|
691 |
+
nets = []
|
692 |
+
attns = []
|
693 |
+
for i in range(num_layers):
|
694 |
+
cin = in_channels if i == 0 else out_channels
|
695 |
+
cskip = prev_out_channels if (i == num_layers - 1) else out_channels
|
696 |
+
|
697 |
+
nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
|
698 |
+
if attention:
|
699 |
+
attns.append(
|
700 |
+
MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
|
701 |
+
)
|
702 |
+
else:
|
703 |
+
attns.append(None)
|
704 |
+
self.nets = nn.ModuleList(nets)
|
705 |
+
self.attns = nn.ModuleList(attns)
|
706 |
+
|
707 |
+
self.upsample = None
|
708 |
+
if upsample:
|
709 |
+
self.upsample = nn.Conv2d(
|
710 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
711 |
+
)
|
712 |
+
|
713 |
+
def forward(self, x, xs):
|
714 |
+
for attn, net in zip(self.attns, self.nets):
|
715 |
+
res_x = xs[-1]
|
716 |
+
xs = xs[:-1]
|
717 |
+
x = torch.cat([x, res_x], dim=1)
|
718 |
+
x = net(x)
|
719 |
+
if attn:
|
720 |
+
x = attn(x)
|
721 |
+
if self.upsample:
|
722 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
723 |
+
x = self.upsample(x)
|
724 |
+
return x
|
725 |
+
|
726 |
+
|
727 |
+
class UNet(nn.Module):
|
728 |
+
def __init__(
|
729 |
+
self,
|
730 |
+
in_channels: int = 9,
|
731 |
+
out_channels: int = 14,
|
732 |
+
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024),
|
733 |
+
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True),
|
734 |
+
mid_attention: bool = True,
|
735 |
+
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256, 128),
|
736 |
+
up_attention: Tuple[bool, ...] = (True, True, True, False, False),
|
737 |
+
layers_per_block: int = 2,
|
738 |
+
skip_scale: float = np.sqrt(0.5),
|
739 |
+
):
|
740 |
+
super().__init__()
|
741 |
+
|
742 |
+
self.conv_in = nn.Conv2d(
|
743 |
+
in_channels, down_channels[0], kernel_size=3, stride=1, padding=1
|
744 |
+
)
|
745 |
+
|
746 |
+
down_blocks = []
|
747 |
+
cout = down_channels[0]
|
748 |
+
for i in range(len(down_channels)):
|
749 |
+
cin = cout
|
750 |
+
cout = down_channels[i]
|
751 |
+
|
752 |
+
down_blocks.append(
|
753 |
+
DownBlock(
|
754 |
+
cin,
|
755 |
+
cout,
|
756 |
+
num_layers=layers_per_block,
|
757 |
+
downsample=(i != len(down_channels) - 1),
|
758 |
+
attention=down_attention[i],
|
759 |
+
skip_scale=skip_scale,
|
760 |
+
)
|
761 |
+
)
|
762 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
763 |
+
|
764 |
+
self.mid_block = MidBlock(
|
765 |
+
down_channels[-1], attention=mid_attention, skip_scale=skip_scale
|
766 |
+
)
|
767 |
+
|
768 |
+
up_blocks = []
|
769 |
+
cout = up_channels[0]
|
770 |
+
for i in range(len(up_channels)):
|
771 |
+
cin = cout
|
772 |
+
cout = up_channels[i]
|
773 |
+
cskip = down_channels[max(-2 - i, -len(down_channels))]
|
774 |
+
|
775 |
+
up_blocks.append(
|
776 |
+
UpBlock(
|
777 |
+
cin,
|
778 |
+
cskip,
|
779 |
+
cout,
|
780 |
+
num_layers=layers_per_block + 1,
|
781 |
+
upsample=(i != len(up_channels) - 1),
|
782 |
+
attention=up_attention[i],
|
783 |
+
skip_scale=skip_scale,
|
784 |
+
)
|
785 |
+
)
|
786 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
787 |
+
self.norm_out = nn.GroupNorm(
|
788 |
+
num_channels=up_channels[-1], num_groups=32, eps=1e-5
|
789 |
+
)
|
790 |
+
self.conv_out = nn.Conv2d(
|
791 |
+
up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1
|
792 |
+
)
|
793 |
+
|
794 |
+
def forward(self, x):
|
795 |
+
x = self.conv_in(x)
|
796 |
+
xss = [x]
|
797 |
+
for block in self.down_blocks:
|
798 |
+
x, xs = block(x)
|
799 |
+
xss.extend(xs)
|
800 |
+
x = self.mid_block(x)
|
801 |
+
for block in self.up_blocks:
|
802 |
+
xs = xss[-len(block.nets) :]
|
803 |
+
xss = xss[: -len(block.nets)]
|
804 |
+
x = block(x, xs)
|
805 |
+
x = self.norm_out(x)
|
806 |
+
x = F.silu(x)
|
807 |
+
x = self.conv_out(x)
|
808 |
+
return x
|
model_index.json
CHANGED
@@ -1,33 +1,13 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
"transformers",
|
6 |
-
"
|
7 |
-
|
8 |
-
|
9 |
-
"transformers",
|
10 |
-
"
|
11 |
-
|
12 |
-
|
13 |
-
"scheduler": [
|
14 |
-
"diffusers",
|
15 |
-
"DDIMScheduler"
|
16 |
-
],
|
17 |
-
"text_encoder": [
|
18 |
-
"transformers",
|
19 |
-
"CLIPTextModel"
|
20 |
-
],
|
21 |
-
"tokenizer": [
|
22 |
-
"transformers",
|
23 |
-
"CLIPTokenizer"
|
24 |
-
],
|
25 |
-
"unet": [
|
26 |
-
"mv_unet",
|
27 |
-
"MultiViewUNetModel"
|
28 |
-
],
|
29 |
-
"vae": [
|
30 |
-
"diffusers",
|
31 |
-
"AutoencoderKL"
|
32 |
-
]
|
33 |
}
|
|
|
1 |
{
|
2 |
+
"_class_name": "LGMFullPipeline",
|
3 |
+
"_diffusers_version": "0.25.0",
|
4 |
+
"feature_extractor": ["transformers", "CLIPImageProcessor"],
|
5 |
+
"image_encoder": ["transformers", "CLIPVisionModel"],
|
6 |
+
"requires_safety_checker": false,
|
7 |
+
"scheduler": ["diffusers", "DDIMScheduler"],
|
8 |
+
"text_encoder": ["transformers", "CLIPTextModel"],
|
9 |
+
"tokenizer": ["transformers", "CLIPTokenizer"],
|
10 |
+
"unet": ["mv_unet", "MultiViewUNetModel"],
|
11 |
+
"vae": ["diffusers", "AutoencoderKL"],
|
12 |
+
"lgm": ["lgm", "LGM"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
pipeline.py
CHANGED
@@ -7,6 +7,7 @@ import numpy as np
|
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
import torch.nn.functional as F
|
|
|
10 |
|
11 |
# require xformers!
|
12 |
import xformers
|
@@ -1031,7 +1032,7 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
|
1031 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
1032 |
|
1033 |
|
1034 |
-
class
|
1035 |
|
1036 |
_optional_components = ["feature_extractor", "image_encoder"]
|
1037 |
|
@@ -1045,6 +1046,7 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
1045 |
# imagedream variant
|
1046 |
feature_extractor: CLIPImageProcessor,
|
1047 |
image_encoder: CLIPVisionModel,
|
|
|
1048 |
requires_safety_checker: bool = False,
|
1049 |
):
|
1050 |
super().__init__()
|
@@ -1080,6 +1082,11 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
1080 |
new_config["clip_sample"] = False
|
1081 |
scheduler._internal_dict = FrozenDict(new_config)
|
1082 |
|
|
|
|
|
|
|
|
|
|
|
1083 |
self.register_modules(
|
1084 |
vae=vae,
|
1085 |
unet=unet,
|
@@ -1088,10 +1095,14 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
1088 |
text_encoder=text_encoder,
|
1089 |
feature_extractor=feature_extractor,
|
1090 |
image_encoder=image_encoder,
|
|
|
1091 |
)
|
1092 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
1093 |
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
1094 |
|
|
|
|
|
|
|
1095 |
def enable_vae_slicing(self):
|
1096 |
r"""
|
1097 |
Enable sliced VAE decoding.
|
@@ -1589,4 +1600,21 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
1589 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1590 |
self.final_offload_hook.offload()
|
1591 |
|
1592 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
import torch.nn.functional as F
|
10 |
+
import torchvision.transforms.functional as TF
|
11 |
|
12 |
# require xformers!
|
13 |
import xformers
|
|
|
1032 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
1033 |
|
1034 |
|
1035 |
+
class LGMFullPipeline(DiffusionPipeline):
|
1036 |
|
1037 |
_optional_components = ["feature_extractor", "image_encoder"]
|
1038 |
|
|
|
1046 |
# imagedream variant
|
1047 |
feature_extractor: CLIPImageProcessor,
|
1048 |
image_encoder: CLIPVisionModel,
|
1049 |
+
lgm,
|
1050 |
requires_safety_checker: bool = False,
|
1051 |
):
|
1052 |
super().__init__()
|
|
|
1082 |
new_config["clip_sample"] = False
|
1083 |
scheduler._internal_dict = FrozenDict(new_config)
|
1084 |
|
1085 |
+
self.imagenet_default_mean = (0.485, 0.456, 0.406)
|
1086 |
+
self.imagenet_default_std = (0.229, 0.224, 0.225)
|
1087 |
+
|
1088 |
+
lgm = lgm.half().cuda()
|
1089 |
+
|
1090 |
self.register_modules(
|
1091 |
vae=vae,
|
1092 |
unet=unet,
|
|
|
1095 |
text_encoder=text_encoder,
|
1096 |
feature_extractor=feature_extractor,
|
1097 |
image_encoder=image_encoder,
|
1098 |
+
lgm=lgm,
|
1099 |
)
|
1100 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
1101 |
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
1102 |
|
1103 |
+
def save_ply(self, gaussians, path):
|
1104 |
+
self.lgm.gs.save_ply(gaussians, path)
|
1105 |
+
|
1106 |
def enable_vae_slicing(self):
|
1107 |
r"""
|
1108 |
Enable sliced VAE decoding.
|
|
|
1600 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1601 |
self.final_offload_hook.offload()
|
1602 |
|
1603 |
+
images = np.stack([image[1], image[2], image[3], image[0]], axis=0)
|
1604 |
+
images = torch.from_numpy(images).permute(0, 3, 1, 2).float().cuda()
|
1605 |
+
images = F.interpolate(
|
1606 |
+
images,
|
1607 |
+
size=(256, 256),
|
1608 |
+
mode="bilinear",
|
1609 |
+
align_corners=False,
|
1610 |
+
)
|
1611 |
+
images = TF.normalize(
|
1612 |
+
images, self.imagenet_default_mean, self.imagenet_default_std
|
1613 |
+
)
|
1614 |
+
|
1615 |
+
rays_embeddings = self.lgm.prepare_default_rays("cuda", elevation=0)
|
1616 |
+
images = torch.cat([images, rays_embeddings], dim=1).unsqueeze(0)
|
1617 |
+
images = images.half().cuda()
|
1618 |
+
|
1619 |
+
result = self.lgm(images)
|
1620 |
+
return result
|