dylanebert HF staff commited on
Commit
28c6190
·
1 Parent(s): c505505
lgm/config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_class_name": "LGM",
3
+ "_diffusers_version": "0.25.0"
4
+ }
lgm/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79e5160e1fc45559515579a7e41ffc22606cf41c3ed8581b09dae9b4ce437099
3
+ size 830126192
lgm/lgm.py ADDED
@@ -0,0 +1,808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import warnings
3
+ from functools import partial
4
+ from typing import Literal, Tuple
5
+
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn.functional as F
9
+ from diff_gaussian_rasterization import (
10
+ GaussianRasterizationSettings,
11
+ GaussianRasterizer,
12
+ )
13
+ from diffusers import ConfigMixin, ModelMixin
14
+ from torch import Tensor, nn
15
+
16
+
17
+ def look_at(campos):
18
+ forward_vector = -campos / np.linalg.norm(campos, axis=-1)
19
+ up_vector = np.array([0, 1, 0], dtype=np.float32)
20
+ right_vector = np.cross(up_vector, forward_vector)
21
+ up_vector = np.cross(forward_vector, right_vector)
22
+ R = np.stack([right_vector, up_vector, forward_vector], axis=-1)
23
+ return R
24
+
25
+
26
+ def orbit_camera(elevation, azimuth, radius=1):
27
+ elevation = np.deg2rad(elevation)
28
+ azimuth = np.deg2rad(azimuth)
29
+ x = radius * np.cos(elevation) * np.sin(azimuth)
30
+ y = -radius * np.sin(elevation)
31
+ z = radius * np.cos(elevation) * np.cos(azimuth)
32
+ campos = np.array([x, y, z])
33
+ T = np.eye(4, dtype=np.float32)
34
+ T[:3, :3] = look_at(campos)
35
+ T[:3, 3] = campos
36
+ return T
37
+
38
+
39
+ def get_rays(pose, h, w, fovy, opengl=True):
40
+ x, y = torch.meshgrid(
41
+ torch.arange(w, device=pose.device),
42
+ torch.arange(h, device=pose.device),
43
+ indexing="xy",
44
+ )
45
+ x = x.flatten()
46
+ y = y.flatten()
47
+
48
+ cx = w * 0.5
49
+ cy = h * 0.5
50
+
51
+ focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
52
+
53
+ camera_dirs = F.pad(
54
+ torch.stack(
55
+ [
56
+ (x - cx + 0.5) / focal,
57
+ (y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
58
+ ],
59
+ dim=-1,
60
+ ),
61
+ (0, 1),
62
+ value=(-1.0 if opengl else 1.0),
63
+ )
64
+
65
+ rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)
66
+ rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d)
67
+
68
+ rays_o = rays_o.view(h, w, 3)
69
+ rays_d = F.normalize(rays_d, dim=-1).view(h, w, 3)
70
+
71
+ return rays_o, rays_d
72
+
73
+
74
+ class GaussianRenderer:
75
+ def __init__(self, fovy, output_size):
76
+ self.output_size = output_size
77
+
78
+ self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
79
+
80
+ zfar = 2.5
81
+ znear = 0.1
82
+ self.tan_half_fov = np.tan(0.5 * np.deg2rad(fovy))
83
+ self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
84
+ self.proj_matrix[0, 0] = 1 / self.tan_half_fov
85
+ self.proj_matrix[1, 1] = 1 / self.tan_half_fov
86
+ self.proj_matrix[2, 2] = (zfar + znear) / (zfar - znear)
87
+ self.proj_matrix[3, 2] = -(zfar * znear) / (zfar - znear)
88
+ self.proj_matrix[2, 3] = 1
89
+
90
+ def render(
91
+ self,
92
+ gaussians,
93
+ cam_view,
94
+ cam_view_proj,
95
+ cam_pos,
96
+ bg_color=None,
97
+ scale_modifier=1,
98
+ ):
99
+ device = gaussians.device
100
+ B, V = cam_view.shape[:2]
101
+
102
+ images = []
103
+ alphas = []
104
+ for b in range(B):
105
+
106
+ means3D = gaussians[b, :, 0:3].contiguous().float()
107
+ opacity = gaussians[b, :, 3:4].contiguous().float()
108
+ scales = gaussians[b, :, 4:7].contiguous().float()
109
+ rotations = gaussians[b, :, 7:11].contiguous().float()
110
+ rgbs = gaussians[b, :, 11:].contiguous().float()
111
+
112
+ for v in range(V):
113
+ view_matrix = cam_view[b, v].float()
114
+ view_proj_matrix = cam_view_proj[b, v].float()
115
+ campos = cam_pos[b, v].float()
116
+
117
+ raster_settings = GaussianRasterizationSettings(
118
+ image_height=self.output_size,
119
+ image_width=self.output_size,
120
+ tanfovx=self.tan_half_fov,
121
+ tanfovy=self.tan_half_fov,
122
+ bg=self.bg_color if bg_color is None else bg_color,
123
+ scale_modifier=scale_modifier,
124
+ viewmatrix=view_matrix,
125
+ projmatrix=view_proj_matrix,
126
+ sh_degree=0,
127
+ campos=campos,
128
+ prefiltered=False,
129
+ debug=False,
130
+ )
131
+
132
+ rasterizer = GaussianRasterizer(raster_settings=raster_settings)
133
+
134
+ rendered_image, _, _, rendered_alpha = rasterizer(
135
+ means3D=means3D,
136
+ means2D=torch.zeros_like(
137
+ means3D, dtype=torch.float32, device=device
138
+ ),
139
+ shs=None,
140
+ colors_precomp=rgbs,
141
+ opacities=opacity,
142
+ scales=scales,
143
+ rotations=rotations,
144
+ cov3D_precomp=None,
145
+ )
146
+
147
+ rendered_image = rendered_image.clamp(0, 1)
148
+
149
+ images.append(rendered_image)
150
+ alphas.append(rendered_alpha)
151
+
152
+ images = torch.stack(images, dim=0).view(
153
+ B, V, 3, self.output_size, self.output_size
154
+ )
155
+ alphas = torch.stack(alphas, dim=0).view(
156
+ B, V, 1, self.output_size, self.output_size
157
+ )
158
+
159
+ return {"image": images, "alpha": alphas}
160
+
161
+ def save_ply(self, gaussians, path):
162
+ assert gaussians.shape[0] == 1, "only support batch size 1"
163
+
164
+ from plyfile import PlyData, PlyElement
165
+
166
+ means3D = gaussians[0, :, 0:3].contiguous().float()
167
+ opacity = gaussians[0, :, 3:4].contiguous().float()
168
+ scales = gaussians[0, :, 4:7].contiguous().float()
169
+ rotations = gaussians[0, :, 7:11].contiguous().float()
170
+ shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float()
171
+
172
+ mask = opacity.squeeze(-1) >= 0.005
173
+ means3D = means3D[mask]
174
+ opacity = opacity[mask]
175
+ scales = scales[mask]
176
+ rotations = rotations[mask]
177
+ shs = shs[mask]
178
+
179
+ opacity = opacity.clamp(1e-6, 1 - 1e-6)
180
+ opacity = torch.log(opacity / (1 - opacity))
181
+ scales = torch.log(scales + 1e-8)
182
+ shs = (shs - 0.5) / 0.28209479177387814
183
+
184
+ xyzs = means3D.detach().cpu().numpy()
185
+ f_dc = (
186
+ shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
187
+ )
188
+ opacities = opacity.detach().cpu().numpy()
189
+ scales = scales.detach().cpu().numpy()
190
+ rotations = rotations.detach().cpu().numpy()
191
+
192
+ h = ["x", "y", "z"]
193
+ for i in range(f_dc.shape[1]):
194
+ h.append("f_dc_{}".format(i))
195
+ h.append("opacity")
196
+ for i in range(scales.shape[1]):
197
+ h.append("scale_{}".format(i))
198
+ for i in range(rotations.shape[1]):
199
+ h.append("rot_{}".format(i))
200
+
201
+ dtype_full = [(attribute, "f4") for attribute in h]
202
+
203
+ elements = np.empty(xyzs.shape[0], dtype=dtype_full)
204
+ attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
205
+ elements[:] = list(map(tuple, attributes))
206
+ el = PlyElement.describe(elements, "vertex")
207
+
208
+ PlyData([el]).write(path)
209
+
210
+
211
+ class LGM(ModelMixin, ConfigMixin):
212
+ def __init__(self):
213
+ super().__init__()
214
+
215
+ self.input_size = 256
216
+ self.splat_size = 128
217
+ self.output_size = 512
218
+ self.radius = 1.5
219
+ self.fovy = 49.1
220
+
221
+ self.unet = UNet(
222
+ 9,
223
+ 14,
224
+ down_channels=(64, 128, 256, 512, 1024, 1024),
225
+ down_attention=(False, False, False, True, True, True),
226
+ mid_attention=True,
227
+ up_channels=(1024, 1024, 512, 256, 128),
228
+ up_attention=(True, True, True, False, False),
229
+ )
230
+
231
+ self.conv = nn.Conv2d(14, 14, kernel_size=1)
232
+ self.gs = GaussianRenderer(self.fovy, self.output_size)
233
+
234
+ self.pos_act = lambda x: x.clamp(-1, 1)
235
+ self.scale_act = lambda x: 0.1 * F.softplus(x)
236
+ self.opacity_act = lambda x: torch.sigmoid(x)
237
+ self.rot_act = F.normalize
238
+ self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5
239
+
240
+ def prepare_default_rays(self, device, elevation=0):
241
+ cam_poses = np.stack(
242
+ [
243
+ orbit_camera(elevation, 0, radius=self.radius),
244
+ orbit_camera(elevation, 90, radius=self.radius),
245
+ orbit_camera(elevation, 180, radius=self.radius),
246
+ orbit_camera(elevation, 270, radius=self.radius),
247
+ ],
248
+ axis=0,
249
+ )
250
+ cam_poses = torch.from_numpy(cam_poses)
251
+
252
+ rays_embeddings = []
253
+ for i in range(cam_poses.shape[0]):
254
+ rays_o, rays_d = get_rays(
255
+ cam_poses[i], self.input_size, self.input_size, self.fovy
256
+ )
257
+ rays_plucker = torch.cat(
258
+ [torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1
259
+ )
260
+ rays_embeddings.append(rays_plucker)
261
+
262
+ rays_embeddings = (
263
+ torch.stack(rays_embeddings, dim=0)
264
+ .permute(0, 3, 1, 2)
265
+ .contiguous()
266
+ .to(device)
267
+ )
268
+
269
+ return rays_embeddings
270
+
271
+ def forward(self, images):
272
+ B, V, C, H, W = images.shape
273
+ images = images.view(B * V, C, H, W)
274
+
275
+ x = self.unet(images)
276
+ x = self.conv(x)
277
+
278
+ x = x.reshape(B, 4, 14, self.splat_size, self.splat_size)
279
+
280
+ x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
281
+
282
+ pos = self.pos_act(x[..., 0:3])
283
+ opacity = self.opacity_act(x[..., 3:4])
284
+ scale = self.scale_act(x[..., 4:7])
285
+ rotation = self.rot_act(x[..., 7:11])
286
+ rgbs = self.rgb_act(x[..., 11:])
287
+
288
+ q = torch.tensor([0, 0, 1, 0], dtype=pos.dtype, device=pos.device)
289
+ R = torch.tensor(
290
+ [
291
+ [-1, 0, 0],
292
+ [0, -1, 0],
293
+ [0, 0, 1],
294
+ ],
295
+ dtype=pos.dtype,
296
+ device=pos.device,
297
+ )
298
+
299
+ pos = torch.matmul(pos, R.T)
300
+
301
+ def multiply_quat(q1, q2):
302
+ w1, x1, y1, z1 = q1.unbind(-1)
303
+ w2, x2, y2, z2 = q2.unbind(-1)
304
+ w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
305
+ x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
306
+ y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
307
+ z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
308
+ return torch.stack([w, x, y, z], dim=-1)
309
+
310
+ for i in range(B):
311
+ rotation[i, :] = multiply_quat(q, rotation[i, :])
312
+
313
+ gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1)
314
+
315
+ return gaussians
316
+
317
+
318
+ # =============================================================================
319
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
320
+ #
321
+ # This source code is licensed under the Apache License, Version 2.0
322
+ # found in the LICENSE file in the root directory of this source tree.
323
+
324
+ # References:
325
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
326
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
327
+ # =============================================================================
328
+ XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
329
+ try:
330
+ if XFORMERS_ENABLED:
331
+ from xformers.ops import memory_efficient_attention, unbind
332
+
333
+ XFORMERS_AVAILABLE = True
334
+ warnings.warn("xFormers is available (Attention)")
335
+ else:
336
+ warnings.warn("xFormers is disabled (Attention)")
337
+ raise ImportError
338
+ except ImportError:
339
+ XFORMERS_AVAILABLE = False
340
+ warnings.warn("xFormers is not available (Attention)")
341
+
342
+
343
+ class Attention(nn.Module):
344
+ def __init__(
345
+ self,
346
+ dim: int,
347
+ num_heads: int = 8,
348
+ qkv_bias: bool = False,
349
+ proj_bias: bool = True,
350
+ attn_drop: float = 0.0,
351
+ proj_drop: float = 0.0,
352
+ ) -> None:
353
+ super().__init__()
354
+ self.num_heads = num_heads
355
+ head_dim = dim // num_heads
356
+ self.scale = head_dim**-0.5
357
+
358
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
359
+ self.attn_drop = nn.Dropout(attn_drop)
360
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
361
+ self.proj_drop = nn.Dropout(proj_drop)
362
+
363
+ def forward(self, x: Tensor) -> Tensor:
364
+ B, N, C = x.shape
365
+ qkv = (
366
+ self.qkv(x)
367
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
368
+ .permute(2, 0, 3, 1, 4)
369
+ )
370
+
371
+ q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
372
+ attn = q @ k.transpose(-2, -1)
373
+
374
+ attn = attn.softmax(dim=-1)
375
+ attn = self.attn_drop(attn)
376
+
377
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
378
+ x = self.proj(x)
379
+ x = self.proj_drop(x)
380
+ return x
381
+
382
+
383
+ class MemEffAttention(Attention):
384
+ def forward(self, x: Tensor, attn_bias=None) -> Tensor:
385
+ if not XFORMERS_AVAILABLE:
386
+ if attn_bias is not None:
387
+ raise AssertionError("xFormers is required for using nested tensors")
388
+ return super().forward(x)
389
+
390
+ B, N, C = x.shape
391
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
392
+
393
+ q, k, v = unbind(qkv, 2)
394
+
395
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
396
+ x = x.reshape([B, N, C])
397
+
398
+ x = self.proj(x)
399
+ x = self.proj_drop(x)
400
+ return x
401
+
402
+
403
+ class CrossAttention(nn.Module):
404
+ def __init__(
405
+ self,
406
+ dim: int,
407
+ dim_q: int,
408
+ dim_k: int,
409
+ dim_v: int,
410
+ num_heads: int = 8,
411
+ qkv_bias: bool = False,
412
+ proj_bias: bool = True,
413
+ attn_drop: float = 0.0,
414
+ proj_drop: float = 0.0,
415
+ ) -> None:
416
+ super().__init__()
417
+ self.dim = dim
418
+ self.num_heads = num_heads
419
+ head_dim = dim // num_heads
420
+ self.scale = head_dim**-0.5
421
+
422
+ self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
423
+ self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
424
+ self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
425
+ self.attn_drop = nn.Dropout(attn_drop)
426
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
427
+ self.proj_drop = nn.Dropout(proj_drop)
428
+
429
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
430
+ B, N, _ = q.shape
431
+ M = k.shape[1]
432
+
433
+ q = self.scale * self.to_q(q).reshape(
434
+ B, N, self.num_heads, self.dim // self.num_heads
435
+ ).permute(0, 2, 1, 3)
436
+ k = (
437
+ self.to_k(k)
438
+ .reshape(B, M, self.num_heads, self.dim // self.num_heads)
439
+ .permute(0, 2, 1, 3)
440
+ )
441
+ v = (
442
+ self.to_v(v)
443
+ .reshape(B, M, self.num_heads, self.dim // self.num_heads)
444
+ .permute(0, 2, 1, 3)
445
+ )
446
+
447
+ attn = q @ k.transpose(-2, -1)
448
+
449
+ attn = attn.softmax(dim=-1)
450
+ attn = self.attn_drop(attn)
451
+
452
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
453
+ x = self.proj(x)
454
+ x = self.proj_drop(x)
455
+ return x
456
+
457
+
458
+ class MemEffCrossAttention(CrossAttention):
459
+ def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
460
+ if not XFORMERS_AVAILABLE:
461
+ if attn_bias is not None:
462
+ raise AssertionError("xFormers is required for using nested tensors")
463
+ return super().forward(q, k, v)
464
+
465
+ B, N, _ = q.shape
466
+ M = k.shape[1]
467
+
468
+ q = self.scale * self.to_q(q).reshape(
469
+ B, N, self.num_heads, self.dim // self.num_heads
470
+ )
471
+ k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads)
472
+ v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads)
473
+
474
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
475
+ x = x.reshape(B, N, -1)
476
+
477
+ x = self.proj(x)
478
+ x = self.proj_drop(x)
479
+ return x
480
+
481
+
482
+ # =============================================================================
483
+ # End of xFormers
484
+
485
+
486
+ class MVAttention(nn.Module):
487
+ def __init__(
488
+ self,
489
+ dim: int,
490
+ num_heads: int = 8,
491
+ qkv_bias: bool = False,
492
+ proj_bias: bool = True,
493
+ attn_drop: float = 0.0,
494
+ proj_drop: float = 0.0,
495
+ groups: int = 32,
496
+ eps: float = 1e-5,
497
+ residual: bool = True,
498
+ skip_scale: float = 1,
499
+ num_frames: int = 4,
500
+ ):
501
+ super().__init__()
502
+
503
+ self.residual = residual
504
+ self.skip_scale = skip_scale
505
+ self.num_frames = num_frames
506
+
507
+ self.norm = nn.GroupNorm(
508
+ num_groups=groups, num_channels=dim, eps=eps, affine=True
509
+ )
510
+ self.attn = MemEffAttention(
511
+ dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop
512
+ )
513
+
514
+ def forward(self, x):
515
+ BV, C, H, W = x.shape
516
+ B = BV // self.num_frames
517
+
518
+ res = x
519
+ x = self.norm(x)
520
+
521
+ x = (
522
+ x.reshape(B, self.num_frames, C, H, W)
523
+ .permute(0, 1, 3, 4, 2)
524
+ .reshape(B, -1, C)
525
+ )
526
+ x = self.attn(x)
527
+ x = (
528
+ x.reshape(B, self.num_frames, H, W, C)
529
+ .permute(0, 1, 4, 2, 3)
530
+ .reshape(BV, C, H, W)
531
+ )
532
+
533
+ if self.residual:
534
+ x = (x + res) * self.skip_scale
535
+ return x
536
+
537
+
538
+ class ResnetBlock(nn.Module):
539
+ def __init__(
540
+ self,
541
+ in_channels: int,
542
+ out_channels: int,
543
+ resample: Literal["default", "up", "down"] = "default",
544
+ groups: int = 32,
545
+ eps: float = 1e-5,
546
+ skip_scale: float = 1,
547
+ ):
548
+ super().__init__()
549
+
550
+ self.in_channels = in_channels
551
+ self.out_channels = out_channels
552
+ self.skip_scale = skip_scale
553
+
554
+ self.norm1 = nn.GroupNorm(
555
+ num_groups=groups, num_channels=in_channels, eps=eps, affine=True
556
+ )
557
+ self.conv1 = nn.Conv2d(
558
+ in_channels, out_channels, kernel_size=3, stride=1, padding=1
559
+ )
560
+
561
+ self.norm2 = nn.GroupNorm(
562
+ num_groups=groups, num_channels=out_channels, eps=eps, affine=True
563
+ )
564
+ self.conv2 = nn.Conv2d(
565
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
566
+ )
567
+
568
+ self.act = F.silu
569
+
570
+ self.resample = None
571
+ if resample == "up":
572
+ self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
573
+ elif resample == "down":
574
+ self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
575
+
576
+ self.shortcut = nn.Identity()
577
+ if self.in_channels != self.out_channels:
578
+ self.shortcut = nn.Conv2d(
579
+ in_channels, out_channels, kernel_size=1, bias=True
580
+ )
581
+
582
+ def forward(self, x):
583
+ res = x
584
+ x = self.norm1(x)
585
+ x = self.act(x)
586
+ if self.resample:
587
+ res = self.resample(res)
588
+ x = self.resample(x)
589
+ x = self.conv1(x)
590
+ x = self.norm2(x)
591
+ x = self.act(x)
592
+ x = self.conv2(x)
593
+ x = (x + self.shortcut(res)) * self.skip_scale
594
+ return x
595
+
596
+
597
+ class DownBlock(nn.Module):
598
+ def __init__(
599
+ self,
600
+ in_channels: int,
601
+ out_channels: int,
602
+ num_layers: int = 1,
603
+ downsample: bool = True,
604
+ attention: bool = True,
605
+ attention_heads: int = 16,
606
+ skip_scale: float = 1,
607
+ ):
608
+ super().__init__()
609
+
610
+ nets = []
611
+ attns = []
612
+ for i in range(num_layers):
613
+ in_channels = in_channels if i == 0 else out_channels
614
+ nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
615
+ if attention:
616
+ attns.append(
617
+ MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
618
+ )
619
+ else:
620
+ attns.append(None)
621
+ self.nets = nn.ModuleList(nets)
622
+ self.attns = nn.ModuleList(attns)
623
+
624
+ self.downsample = None
625
+ if downsample:
626
+ self.downsample = nn.Conv2d(
627
+ out_channels, out_channels, kernel_size=3, stride=2, padding=1
628
+ )
629
+
630
+ def forward(self, x):
631
+ xs = []
632
+ for attn, net in zip(self.attns, self.nets):
633
+ x = net(x)
634
+ if attn:
635
+ x = attn(x)
636
+ xs.append(x)
637
+ if self.downsample:
638
+ x = self.downsample(x)
639
+ xs.append(x)
640
+ return x, xs
641
+
642
+
643
+ class MidBlock(nn.Module):
644
+ def __init__(
645
+ self,
646
+ in_channels: int,
647
+ num_layers: int = 1,
648
+ attention: bool = True,
649
+ attention_heads: int = 16,
650
+ skip_scale: float = 1,
651
+ ):
652
+ super().__init__()
653
+
654
+ nets = []
655
+ attns = []
656
+ nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
657
+ for _ in range(num_layers):
658
+ nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
659
+ if attention:
660
+ attns.append(
661
+ MVAttention(in_channels, attention_heads, skip_scale=skip_scale)
662
+ )
663
+ else:
664
+ attns.append(None)
665
+ self.nets = nn.ModuleList(nets)
666
+ self.attns = nn.ModuleList(attns)
667
+
668
+ def forward(self, x):
669
+ x = self.nets[0](x)
670
+ for attn, net in zip(self.attns, self.nets[1:]):
671
+ if attn:
672
+ x = attn(x)
673
+ x = net(x)
674
+ return x
675
+
676
+
677
+ class UpBlock(nn.Module):
678
+ def __init__(
679
+ self,
680
+ in_channels: int,
681
+ prev_out_channels: int,
682
+ out_channels: int,
683
+ num_layers: int = 1,
684
+ upsample: bool = True,
685
+ attention: bool = True,
686
+ attention_heads: int = 16,
687
+ skip_scale: float = 1,
688
+ ):
689
+ super().__init__()
690
+
691
+ nets = []
692
+ attns = []
693
+ for i in range(num_layers):
694
+ cin = in_channels if i == 0 else out_channels
695
+ cskip = prev_out_channels if (i == num_layers - 1) else out_channels
696
+
697
+ nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
698
+ if attention:
699
+ attns.append(
700
+ MVAttention(out_channels, attention_heads, skip_scale=skip_scale)
701
+ )
702
+ else:
703
+ attns.append(None)
704
+ self.nets = nn.ModuleList(nets)
705
+ self.attns = nn.ModuleList(attns)
706
+
707
+ self.upsample = None
708
+ if upsample:
709
+ self.upsample = nn.Conv2d(
710
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
711
+ )
712
+
713
+ def forward(self, x, xs):
714
+ for attn, net in zip(self.attns, self.nets):
715
+ res_x = xs[-1]
716
+ xs = xs[:-1]
717
+ x = torch.cat([x, res_x], dim=1)
718
+ x = net(x)
719
+ if attn:
720
+ x = attn(x)
721
+ if self.upsample:
722
+ x = F.interpolate(x, scale_factor=2.0, mode="nearest")
723
+ x = self.upsample(x)
724
+ return x
725
+
726
+
727
+ class UNet(nn.Module):
728
+ def __init__(
729
+ self,
730
+ in_channels: int = 9,
731
+ out_channels: int = 14,
732
+ down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024),
733
+ down_attention: Tuple[bool, ...] = (False, False, False, True, True, True),
734
+ mid_attention: bool = True,
735
+ up_channels: Tuple[int, ...] = (1024, 1024, 512, 256, 128),
736
+ up_attention: Tuple[bool, ...] = (True, True, True, False, False),
737
+ layers_per_block: int = 2,
738
+ skip_scale: float = np.sqrt(0.5),
739
+ ):
740
+ super().__init__()
741
+
742
+ self.conv_in = nn.Conv2d(
743
+ in_channels, down_channels[0], kernel_size=3, stride=1, padding=1
744
+ )
745
+
746
+ down_blocks = []
747
+ cout = down_channels[0]
748
+ for i in range(len(down_channels)):
749
+ cin = cout
750
+ cout = down_channels[i]
751
+
752
+ down_blocks.append(
753
+ DownBlock(
754
+ cin,
755
+ cout,
756
+ num_layers=layers_per_block,
757
+ downsample=(i != len(down_channels) - 1),
758
+ attention=down_attention[i],
759
+ skip_scale=skip_scale,
760
+ )
761
+ )
762
+ self.down_blocks = nn.ModuleList(down_blocks)
763
+
764
+ self.mid_block = MidBlock(
765
+ down_channels[-1], attention=mid_attention, skip_scale=skip_scale
766
+ )
767
+
768
+ up_blocks = []
769
+ cout = up_channels[0]
770
+ for i in range(len(up_channels)):
771
+ cin = cout
772
+ cout = up_channels[i]
773
+ cskip = down_channels[max(-2 - i, -len(down_channels))]
774
+
775
+ up_blocks.append(
776
+ UpBlock(
777
+ cin,
778
+ cskip,
779
+ cout,
780
+ num_layers=layers_per_block + 1,
781
+ upsample=(i != len(up_channels) - 1),
782
+ attention=up_attention[i],
783
+ skip_scale=skip_scale,
784
+ )
785
+ )
786
+ self.up_blocks = nn.ModuleList(up_blocks)
787
+ self.norm_out = nn.GroupNorm(
788
+ num_channels=up_channels[-1], num_groups=32, eps=1e-5
789
+ )
790
+ self.conv_out = nn.Conv2d(
791
+ up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1
792
+ )
793
+
794
+ def forward(self, x):
795
+ x = self.conv_in(x)
796
+ xss = [x]
797
+ for block in self.down_blocks:
798
+ x, xs = block(x)
799
+ xss.extend(xs)
800
+ x = self.mid_block(x)
801
+ for block in self.up_blocks:
802
+ xs = xss[-len(block.nets) :]
803
+ xss = xss[: -len(block.nets)]
804
+ x = block(x, xs)
805
+ x = self.norm_out(x)
806
+ x = F.silu(x)
807
+ x = self.conv_out(x)
808
+ return x
model_index.json CHANGED
@@ -1,33 +1,13 @@
1
  {
2
- "_class_name": "MVDreamPipeline",
3
- "_diffusers_version": "0.25.0",
4
- "feature_extractor": [
5
- "transformers",
6
- "CLIPImageProcessor"
7
- ],
8
- "image_encoder": [
9
- "transformers",
10
- "CLIPVisionModel"
11
- ],
12
- "requires_safety_checker": false,
13
- "scheduler": [
14
- "diffusers",
15
- "DDIMScheduler"
16
- ],
17
- "text_encoder": [
18
- "transformers",
19
- "CLIPTextModel"
20
- ],
21
- "tokenizer": [
22
- "transformers",
23
- "CLIPTokenizer"
24
- ],
25
- "unet": [
26
- "mv_unet",
27
- "MultiViewUNetModel"
28
- ],
29
- "vae": [
30
- "diffusers",
31
- "AutoencoderKL"
32
- ]
33
  }
 
1
  {
2
+ "_class_name": "LGMFullPipeline",
3
+ "_diffusers_version": "0.25.0",
4
+ "feature_extractor": ["transformers", "CLIPImageProcessor"],
5
+ "image_encoder": ["transformers", "CLIPVisionModel"],
6
+ "requires_safety_checker": false,
7
+ "scheduler": ["diffusers", "DDIMScheduler"],
8
+ "text_encoder": ["transformers", "CLIPTextModel"],
9
+ "tokenizer": ["transformers", "CLIPTokenizer"],
10
+ "unet": ["mv_unet", "MultiViewUNetModel"],
11
+ "vae": ["diffusers", "AutoencoderKL"],
12
+ "lgm": ["lgm", "LGM"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  }
pipeline.py CHANGED
@@ -7,6 +7,7 @@ import numpy as np
7
  import torch
8
  import torch.nn as nn
9
  import torch.nn.functional as F
 
10
 
11
  # require xformers!
12
  import xformers
@@ -1031,7 +1032,7 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin):
1031
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
1032
 
1033
 
1034
- class MVDreamPipeline(DiffusionPipeline):
1035
 
1036
  _optional_components = ["feature_extractor", "image_encoder"]
1037
 
@@ -1045,6 +1046,7 @@ class MVDreamPipeline(DiffusionPipeline):
1045
  # imagedream variant
1046
  feature_extractor: CLIPImageProcessor,
1047
  image_encoder: CLIPVisionModel,
 
1048
  requires_safety_checker: bool = False,
1049
  ):
1050
  super().__init__()
@@ -1080,6 +1082,11 @@ class MVDreamPipeline(DiffusionPipeline):
1080
  new_config["clip_sample"] = False
1081
  scheduler._internal_dict = FrozenDict(new_config)
1082
 
 
 
 
 
 
1083
  self.register_modules(
1084
  vae=vae,
1085
  unet=unet,
@@ -1088,10 +1095,14 @@ class MVDreamPipeline(DiffusionPipeline):
1088
  text_encoder=text_encoder,
1089
  feature_extractor=feature_extractor,
1090
  image_encoder=image_encoder,
 
1091
  )
1092
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
1093
  self.register_to_config(requires_safety_checker=requires_safety_checker)
1094
 
 
 
 
1095
  def enable_vae_slicing(self):
1096
  r"""
1097
  Enable sliced VAE decoding.
@@ -1589,4 +1600,21 @@ class MVDreamPipeline(DiffusionPipeline):
1589
  if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1590
  self.final_offload_hook.offload()
1591
 
1592
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  import torch
8
  import torch.nn as nn
9
  import torch.nn.functional as F
10
+ import torchvision.transforms.functional as TF
11
 
12
  # require xformers!
13
  import xformers
 
1032
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
1033
 
1034
 
1035
+ class LGMFullPipeline(DiffusionPipeline):
1036
 
1037
  _optional_components = ["feature_extractor", "image_encoder"]
1038
 
 
1046
  # imagedream variant
1047
  feature_extractor: CLIPImageProcessor,
1048
  image_encoder: CLIPVisionModel,
1049
+ lgm,
1050
  requires_safety_checker: bool = False,
1051
  ):
1052
  super().__init__()
 
1082
  new_config["clip_sample"] = False
1083
  scheduler._internal_dict = FrozenDict(new_config)
1084
 
1085
+ self.imagenet_default_mean = (0.485, 0.456, 0.406)
1086
+ self.imagenet_default_std = (0.229, 0.224, 0.225)
1087
+
1088
+ lgm = lgm.half().cuda()
1089
+
1090
  self.register_modules(
1091
  vae=vae,
1092
  unet=unet,
 
1095
  text_encoder=text_encoder,
1096
  feature_extractor=feature_extractor,
1097
  image_encoder=image_encoder,
1098
+ lgm=lgm,
1099
  )
1100
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
1101
  self.register_to_config(requires_safety_checker=requires_safety_checker)
1102
 
1103
+ def save_ply(self, gaussians, path):
1104
+ self.lgm.gs.save_ply(gaussians, path)
1105
+
1106
  def enable_vae_slicing(self):
1107
  r"""
1108
  Enable sliced VAE decoding.
 
1600
  if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1601
  self.final_offload_hook.offload()
1602
 
1603
+ images = np.stack([image[1], image[2], image[3], image[0]], axis=0)
1604
+ images = torch.from_numpy(images).permute(0, 3, 1, 2).float().cuda()
1605
+ images = F.interpolate(
1606
+ images,
1607
+ size=(256, 256),
1608
+ mode="bilinear",
1609
+ align_corners=False,
1610
+ )
1611
+ images = TF.normalize(
1612
+ images, self.imagenet_default_mean, self.imagenet_default_std
1613
+ )
1614
+
1615
+ rays_embeddings = self.lgm.prepare_default_rays("cuda", elevation=0)
1616
+ images = torch.cat([images, rays_embeddings], dim=1).unsqueeze(0)
1617
+ images = images.half().cuda()
1618
+
1619
+ result = self.lgm(images)
1620
+ return result