--- base_model: openai/whisper-large-v2 datasets: - common_voice_16_1 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2-ft-common_voice_16_1-241026-v1 results: [] --- # whisper-large-v2-ft-common_voice_16_1-241026-v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2703 | 1.0 | 56 | 2.2818 | | 1.602 | 2.0 | 112 | 0.6618 | | 0.3079 | 3.0 | 168 | 0.1281 | | 0.1397 | 4.0 | 224 | 0.1231 | | 0.1213 | 5.0 | 280 | 0.1214 | | 0.1084 | 6.0 | 336 | 0.1225 | | 0.0983 | 7.0 | 392 | 0.1239 | | 0.0918 | 8.0 | 448 | 0.1237 | | 0.0862 | 9.0 | 504 | 0.1248 | | 0.0824 | 10.0 | 560 | 0.1253 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.0