File size: 1,985 Bytes
1a69afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: openai/whisper-large-v2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1126

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.4773        | 1.0   | 65   | 2.3737          |
| 1.4068        | 2.0   | 130  | 0.3870          |
| 0.1629        | 3.0   | 195  | 0.1140          |
| 0.1225        | 4.0   | 260  | 0.1085          |
| 0.106         | 5.0   | 325  | 0.1079          |
| 0.0935        | 6.0   | 390  | 0.1087          |
| 0.0848        | 7.0   | 455  | 0.1098          |
| 0.0772        | 8.0   | 520  | 0.1113          |
| 0.0718        | 9.0   | 585  | 0.1123          |
| 0.069         | 10.0  | 650  | 0.1126          |


### Framework versions

- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0