--- base_model: openai/whisper-large-v2 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2-ft-my_dataset_letter_BV_no_split-241025-v1 results: [] --- # whisper-large-v2-ft-my_dataset_letter_BV_no_split-241025-v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.5499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.9778 | 1.0 | 2 | 13.5082 | | 13.1164 | 2.0 | 4 | 11.4291 | | 10.7363 | 3.0 | 6 | 9.4007 | | 9.1462 | 4.0 | 8 | 8.5659 | | 8.4123 | 5.0 | 10 | 8.1629 | | 8.1021 | 6.0 | 12 | 7.9240 | | 7.8847 | 7.0 | 14 | 7.7648 | | 7.7321 | 8.0 | 16 | 7.6497 | | 7.6318 | 9.0 | 18 | 7.5812 | | 7.5679 | 10.0 | 20 | 7.5499 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1