--- license: apache-2.0 datasets: - dyyyyyyyy/ScaleQuest-Math language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-generation ---

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

# Model Card for Mistral-7B-ScaleQuest We introduce ScaleQuest, a scalable and novel data synthesis method that utilizes small-size open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. * 📑 Project Page: [https://scalequest.github.io](https://scalequest.github.io/) * 💻 Code: [https://github.com/yyDing1/ScaleQuest](https://github.com/yyDing1/ScaleQuest/) * 📖 Paper: [Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch](https://arxiv.org/abs/2410.18693) * 💾 Models in the 🤗 HuggingFace Hub: [ScaleQuest-Models](https://huggingface.co/collections/dyyyyyyyy/scalequest-670a7dc2623c91990f28913b)

## Datasets & Models Math Dataset: [link](https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math) We release two question generator models and four problem-solving models. | Model | Type | MATH | Olympiad Bench | 🤗 HuggingFace
Download Link | | - | :-: | :-: | :-: | :-: | | ScaleQuest-DeepSeekMath-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-DeepSeekMath-7B-QGen) | ScaleQuest-Qwen2-Math-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-Qwen2-Math-7B-QGen) | Mistral-7B-ScaleQuest | problem solver | 62.9 | 26.8 | [link](https://huggingface.co/dyyyyyyyy/Mistral-7B-ScaleQuest) | | Llama3-8B-ScaleQuest | problem solver | 64.4 | 25.3 | [link](https://huggingface.co/dyyyyyyyy/Llama3-8B-ScaleQuest) | | DeepSeekMath-7B-ScaleQuest | problem solver | 66.6 | 29.9 | [link](https://huggingface.co/dyyyyyyyy/DeepSeekMath-7B-ScaleQuest) | | Qwen2-Math-7B-ScaleQuest | problem solver | 73.4 | 38.5 | [link](https://huggingface.co/dyyyyyyyy/Qwen2-Math-7B-ScaleQuest) | ## Demo usage Below is an example using `Mistral-7B-ScaleQuest` ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "dyyyyyyyy/Mistral-7B-ScaleQuest" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) question = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$." sys_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request." + "\n\n" query_prompt = "### Instruction:" + "\n" # {query} prompt_after_query = "\n\n" resp_prompt = "### Response:" + "\n" prompt_before_resp = "" # {resp} delim = "\n\n" prefix_prompt = f"{query_prompt}{question}{prompt_after_query}{resp_prompt}{prompt_before_resp}".rstrip(" ") full_prompt = sys_prompt + delim.join([prefix_prompt]) # print(full_prompt) inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False) print(tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)) ``` ## Citation ```bibtex @article{ding2024unleashing, title={Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch}, author={Ding, Yuyang and Shi, Xinyu and Liang, Xiaobo and Li, Juntao and Zhu, Qiaoming and Zhang, Min}, journal={https://arxiv.org/abs/2410.18693}, year={2024} } ```