eagle0504 commited on
Commit
af95471
Β·
verified Β·
1 Parent(s): ad3403f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -170
README.md CHANGED
@@ -1,199 +1,149 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1
6
+ new_version: Qwen/Qwen2.5-0.5B
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
+ # Qwen2.5-0.5B Fine-Tuned on GSM8K with DeepSeek Augmentation
11
 
12
+ ## Model Overview πŸš€
13
 
14
+ This model is a **fine-tuned version of Qwen2.5-0.5B**, specifically trained for **mathematical reasoning tasks** using the **GSM8K dataset**, with additional **Chain-of-Thought (CoT) reasoning augmentation** from **DeepSeek-V3**. The model has been fine-tuned to generate detailed **step-by-step solutions** to grade school math problems, ensuring **better logical reasoning and interpretability**.
15
 
16
+ ### πŸ”Ή **Key Features**
17
+ - **Base Model:** `Qwen/Qwen2.5-0.5B`
18
+ - **Fine-Tuned On:** `eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`
19
+ - **Optimized for:** **Mathematical problem-solving & step-by-step reasoning**
20
+ - **Fine-tuned with:** **LoRA (Low-Rank Adaptation) for parameter-efficient training**
21
+ - **Chain-of-Thought (CoT):** Generates clear and structured reasoning for each problem
22
+ - **Inference-ready:** Available on πŸ€— Hugging Face Hub
23
 
24
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ## **Model Details πŸ“œ**
27
+
28
+ ### **πŸ“ Description**
29
+ - **Developed by:** [Your Name or Organization]
30
+ - **Funded by:** [Optional: Mention if funded]
31
+ - **Shared by:** Hugging Face Hub
32
+ - **Model Type:** Causal Language Model (**Text Generation**)
33
+ - **Languages:** English (`en`)
34
+ - **License:** MIT License
35
+ - **Fine-tuned from:** `Qwen/Qwen2.5-0.5B`
36
+
37
+ ### πŸ“‚ **Model Repository**
38
+ - **Hugging Face Model Page:**
39
+ πŸ‘‰ [Fine-tuned Qwen2.5-0.5B](https://huggingface.co/your-repo-id)
40
 
41
+ ---
42
 
43
+ ## **πŸ“₯ How to Load & Use This Model**
44
+ You can load this model using πŸ€— `transformers` as follows:
45
 
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
+ # Define model repo ID (Replace with actual HF repo)
50
+ model_name = "your-repo-id"
51
 
52
+ # Load tokenizer and model
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+ model = AutoModelForCausalLM.from_pretrained(model_name)
55
 
56
+ # Move model to GPU (if available)
57
+ import torch
58
+ device = "cuda" if torch.cuda.is_available() else "cpu"
59
+ model.to(device)
60
 
61
+ # Example inference
62
+ question = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"
63
+ inputs = tokenizer(question, return_tensors="pt").to(device)
64
+ output = model.generate(**inputs, max_length=200)
65
 
66
+ # Decode and print response
67
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
68
+ ```
69
 
70
+ ---
71
 
72
+ ## **πŸ”¬ Training Details**
73
+ ### **πŸ—„οΈ Training Data**
74
+ The model was fine-tuned on the **GSM8K dataset**, specifically the augmented dataset:
75
+ πŸ”Ή [`eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`](https://huggingface.co/datasets/eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1)
76
+
77
+ This dataset contains:
78
+ - **8K training samples** (`train` split)
79
+ - **1K testing samples** (`test` split)
80
+ - Features: `"question"`, `"answer"`, and `"cot"` (Chain-of-Thought)
81
+
82
+ ### **βš™οΈ Training Procedure**
83
+ - **Preprocessing**: Each question was formatted using a prompt template to encourage step-by-step reasoning.
84
+ - **Training Framework**: Used `transformers`, `trl`, and `unsloth` for efficient fine-tuning.
85
+ - **Fine-Tuning Strategy**: **LoRA (Low-Rank Adaptation)**
86
+ - Applied to **query and value projection layers** (`q_proj`, `v_proj`)
87
+ - **LoRA hyperparameters:**
88
+ - `r=8`, `lora_alpha=16`, `lora_dropout=0.1`
89
+ - **Optimization**:
90
+ - **Mixed Precision Training** (`fp16`)
91
+ - **Batch Size:** 16
92
+ - **Gradient Accumulation:** 1
93
+ - **Learning Rate:** 2e-4
94
+ - **Training Time:** Approx. **10,446 seconds (~3 hours)**
95
 
96
+ ---
97
 
98
+ ## **πŸ“Š Performance & Evaluation**
99
+ ### **βœ… Training Performance**
100
+ | Step | Loss | Grad Norm | Learning Rate | Epoch |
101
+ |------|------|-----------|---------------|-------|
102
+ | 10 | 2.1319 | 3.656 | 2e-4 | 0.0107 |
103
+ | 1000 | 0.2013 | 0.328 | 2.3e-7 | 9.98 |
104
+ | 9340 | 0.2048 | 0.341 | 2.1e-8 | 9.99 |
105
+
106
+ ### **πŸ§ͺ Testing & Expected Results**
107
+ The model was evaluated on the **1K test samples** and showed **strong accuracy in multi-step problem-solving**.
108
+
109
+ Example expected response:
110
+ ```text
111
+ To solve the problem, we first find the clips sold in May:
112
+ Clips in May = 48 / 2 = 24
113
+ Next, we find the total:
114
+ Total Clips = 48 + 24 = 72
115
+ #### Answer: 72
116
+ ```
117
 
118
+ ---
119
 
120
+ ## **πŸ›‘ Bias, Risks, and Limitations**
121
+ ### ⚠️ **Potential Risks**
122
+ - May **hallucinate** incorrect reasoning steps if prompts are unclear.
123
+ - Could struggle with **complex mathematical problems** outside its training data.
124
+ - **Limited generalization** to non-math reasoning tasks.
125
 
126
+ ### 🎯 **Recommendations**
127
+ - If using this model for **critical applications**, verify outputs with human review.
128
+ - For **better performance**, fine-tune on **larger datasets** with real-world numerical reasoning.
129
 
130
+ ---
131
 
132
+ ## **🌎 Environmental Impact**
133
+ **Estimated Carbon Emissions:**
134
+ - **Hardware Used:** NVIDIA A100 GPU
135
+ - **Training Time:** ~3 hours
136
+ - **Estimated CO2 Emitted:** ~5.6 kg CO2eq (using [ML Impact Calculator](https://mlco2.github.io/impact#compute))
137
 
138
+ ---
139
 
140
+ ## **πŸ“š Citation**
141
+ If you use this model in your research, please cite it as:
142
 
143
+ ```bibtex
144
+ @misc{Upcoming,
145
+ title={Upcoming},
146
+ author={Yiqiao},
147
+ year={2025}
148
+ }
149
+ ```