Graph Machine Learning
AnemoI
English
jpxkqx commited on
Commit
6b6331d
·
verified ·
1 Parent(s): 21e50b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -27
README.md CHANGED
@@ -123,7 +123,8 @@ the upper atmosphere (e.g., 50 hPa) contribute relatively little to the total lo
123
 
124
  Data parallelism is used for training, with a batch size of 16. One model instance is split across four 40GB A100
125
  GPUs within one node. Training is done using mixed precision (Micikevicius et al. [2018]), and the entire process
126
- takes about one week, with 64 GPUs in total.
 
127
 
128
  ## Evaluation
129
 
@@ -163,36 +164,16 @@ takes about one week, with 64 GPUs in total.
163
 
164
  {{ model_examination | default("[More Information Needed]", true)}}
165
 
166
- ## Environmental Impact
167
 
168
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
169
 
170
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
171
 
172
- - **Hardware Type:** {{ hardware_type | default("[More Information Needed]", true)}}
173
- - **Hours used:** {{ hours_used | default("[More Information Needed]", true)}}
174
- - **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}}
175
- - **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}}
176
- - **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}}
177
 
178
- ## Technical Specifications [optional]
179
-
180
- ### Model Architecture and Objective
181
-
182
- {{ model_specs | default("[More Information Needed]", true)}}
183
-
184
- ### Compute Infrastructure
185
-
186
- {{ compute_infrastructure | default("[More Information Needed]", true)}}
187
-
188
- #### Hardware
189
-
190
- {{ hardware_requirements | default("[More Information Needed]", true)}}
191
-
192
- We acknowledge PRACE for awarding us access to Leonardo, CINECA, Italy
193
-
194
-
195
- #### Software
196
 
197
  The model was developed and trained using the [AnemoI framework](https://anemoi-docs.readthedocs.io/en/latest/index.html).
198
  AnemoI is a framework for developing machine learning weather forecasting models. It comprises of components or packages
 
123
 
124
  Data parallelism is used for training, with a batch size of 16. One model instance is split across four 40GB A100
125
  GPUs within one node. Training is done using mixed precision (Micikevicius et al. [2018]), and the entire process
126
+ takes about one week, with 64 GPUs in total. The checkpoint size is 1.19 GB and it does not include the optimizer
127
+ state.
128
 
129
  ## Evaluation
130
 
 
164
 
165
  {{ model_examination | default("[More Information Needed]", true)}}
166
 
167
+ ## Technical Specifications
168
 
169
+ ### Hardware
170
 
171
+ <!-- {{ hardware_requirements | default("[More Information Needed]", true)}} -->
172
 
173
+ We acknowledge PRACE for awarding us access to Leonardo, CINECA, Italy. In particular, this AIFS version has been trained
174
+ over 64 A100 GPUs (40GB).
 
 
 
175
 
176
+ ### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
  The model was developed and trained using the [AnemoI framework](https://anemoi-docs.readthedocs.io/en/latest/index.html).
179
  AnemoI is a framework for developing machine learning weather forecasting models. It comprises of components or packages