ppo-lunarlander-v2-v1 / config.json
ecyht2's picture
Initial Commit
37aa2e2 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf9ae83b250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf9ae83b2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf9ae83b370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf9ae83b400>", "_build": "<function ActorCriticPolicy._build at 0x7cf9ae83b490>", "forward": "<function ActorCriticPolicy.forward at 0x7cf9ae83b520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf9ae83b5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf9ae83b640>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf9ae83b6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf9ae83b760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf9ae83b7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf9ae83b880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf9505b5e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733059049132105823, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK38MT6P0yY9NQ+zvQ4H+b04iJk8uJ1lOAAAAAAAAAAA8M+PPvavBD2dQ/S9i09LvlwviT6AFsI+AAAAAAAAgD+GcgK+UltvPj4Fpj2diJ++aY9SOzvA0zwAAAAAAAAAALasoD7PSUI/UnjCPsbTBb/awow+oHa/vAAAAAAAAAAAANogvhzIL7yqw2m7TOzAuXGqlz3DLJw6AACAPwAAgD+NogG+YJtlP4yWIb4GQg2/2cybvV0Zoj0AAAAAAAAAAMCy0b0qsb8/BOcOvwcfSLyFMYS9SkzLvQAAAAAAAAAAM2K1PFwMDLxP7IS7TjuYPFerXT2man29AACAPwAAgD9mvNa9uH61uWJoHrzwiK41n6pvu8jCIrUAAIA/AAAAALOhm71GEdM+JBiXvaGWlr62PJu9vA0uOwAAAAAAAAAADds7vm5Aj7xBxCo7crWrOTdY9z1FT3y6AACAPwAAgD+msmA+bMa8PJBG1rqB82u5tXlJPmwTDToAAIA/AACAP4CjdL3OJJE91tKJPJyJgr4q6+k665vYugAAAAAAAAAATbi1Pf0yFz8wdVI9GqP6vsmzDj3b9d07AAAAAAAAAACz3ju+BnYrPwpd2bt+ANG+U2cBvnGZBD4AAAAAAAAAAC0fhT52JQq8jvSYOCY6rbZMtm29cqSvtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5hShSLqD+MAWyUTXECjAF0lEdAmdOgMUh3aHV9lChoBkdAciolUZNwi2gHTR4CaAhHQJnVDnzQNTd1fZQoaAZHQG7Dvkq+ajNoB0vlaAhHQJnVF/pdKNB1fZQoaAZHQGTvzWXkYGdoB03oA2gIR0CZ1dJiy6czdX2UKGgGR0Bj5G7BfrrxaAdN6ANoCEdAmdgirksBhnV9lChoBkdAcUjL876pHmgHS9poCEdAmdhLdFfAsXV9lChoBkdAcNZjXFtKqWgHTScBaAhHQJnaYCIUJv51fZQoaAZHQHAI8+zMRpVoB00HAWgIR0CZ2mqCpWFOdX2UKGgGR0Bj7mrjo6jnaAdN6ANoCEdAmdp0NOM2nHV9lChoBkdAbrBXpW3jMmgHS/FoCEdAmjWx3qzJIXV9lChoBkdAcZFLxqfvnmgHS9hoCEdAmjYKWkadc3V9lChoBkdAcN8k7wKBumgHTQQBaAhHQJo2SWom5Ud1fZQoaAZHQG+PFUADJU5oB0vQaAhHQJo4tEQXhwV1fZQoaAZHQHEZFXzUZvVoB00nAWgIR0CaOQ+Eh7mddX2UKGgGR0BxK2weNkvsaAdNAAFoCEdAmjmwzk6tDHV9lChoBkdAcWUL9deIEmgHS+1oCEdAmjw88La24XV9lChoBkdAcQK+UQkHEGgHS+5oCEdAmj6IKhL5AXV9lChoBkdAbf2tPHktE2gHS/ZoCEdAmj7Z9qk/KXV9lChoBkdAcgaQGwA2h2gHS9JoCEdAmj7zFERao3V9lChoBkdAbvXbdJrckGgHTQIBaAhHQJo/a1D0Dlp1fZQoaAZHQG6G3I+4b0hoB01pAmgIR0CaP5sWO6uodX2UKGgGR0By0xB9kSVXaAdNpQFoCEdAmkAJeqrBCXV9lChoBkdAcu+EE1VHWmgHTV8BaAhHQJpAibqhUR51fZQoaAZHQG07ZZjhDPZoB0vcaAhHQJpBNWMju8d1fZQoaAZHQHDWazZ6D5FoB0vyaAhHQJpBscinpB51fZQoaAZHQG2VW4NI9TxoB0vkaAhHQJpCFk+X7ch1fZQoaAZHQGETdJjDsMRoB03oA2gIR0CaQkrnDBM0dX2UKGgGR0ByPdWQwK0EaAdNRQFoCEdAmkKhdld1MnV9lChoBkdAY594zrNW2mgHTegDaAhHQJpDT0jC53F1fZQoaAZHQHJX+A7PppxoB0vQaAhHQJpFBmseXAx1fZQoaAZHQHERDVQQ+U1oB00MAWgIR0CaRRqbz9S/dX2UKGgGR0BxSOjmCAc1aAdL1WgIR0CaRWcpb2UTdX2UKGgGR0Bv+gbuMMqjaAdL52gIR0CaRdN96TnrdX2UKGgGR0BvYcJQcghbaAdL5GgIR0CaRp7w8W9EdX2UKGgGR0Bv4TSG8EmqaAdL/2gIR0CaRw6jnFHbdX2UKGgGR0Bw7ELKFIuoaAdNBwFoCEdAmkco1LrX2HV9lChoBkdAbcICnP3SKGgHS+doCEdAmkcpL/S6UnV9lChoBkdAcPaTYNAkcGgHS9ZoCEdAmkegHqu8snV9lChoBkdAcOLNutOmBWgHS/poCEdAmkgpYcNpd3V9lChoBkdAb6+IsyzolmgHS+NoCEdAmkhtCVrylXV9lChoBkdAXiIOUdJaq2gHTegDaAhHQJpJouscQy11fZQoaAZHQHIPKlk6LfloB003AWgIR0CaSxT7EYO2dX2UKGgGR0BwIp+mWMS9aAdL/mgIR0CaTC0WdmQKdX2UKGgGR0BwX/rVvuPWaAdL32gIR0CaTR62v0ROdX2UKGgGR0BxNYL3K0UoaAdNEwFoCEdAmk1ja4+bE3V9lChoBkdAcPGCfHxSYWgHS9poCEdAmk2N9lVcU3V9lChoBkdAcliMDwH7g2gHS9NoCEdAmk3nfEXLvHV9lChoBkdAbAXlJ6IFeWgHS+hoCEdAmk4BfjS5RXV9lChoBkdAb/j8O09hZ2gHS+toCEdAmk4CMPz4DnV9lChoBkdAcDt0Rvm5lWgHTVIBaAhHQJpO+u/1xsF1fZQoaAZHQG8yI9cKPXFoB0vjaAhHQJpPBVPva111fZQoaAZHQHHtTIeYD1ZoB0vxaAhHQJpRFeSjgyd1fZQoaAZHQEWVFDOTq0NoB0vDaAhHQJpTIi3XqaB1fZQoaAZHQHBpSdJ8OTdoB0vcaAhHQJpUXxpcoph1fZQoaAZHQHHwNLYf4h5oB0vzaAhHQJpV3vE0iyJ1fZQoaAZHQG78MRHww0xoB0v7aAhHQJpWSx+rlvJ1fZQoaAZHQGPFPmozeoFoB03oA2gIR0CaVwhMrVe8dX2UKGgGR0BwW2Q4jrzHaAdL72gIR0CaVx8UEgW8dX2UKGgGR0BwJmyB06o3aAdNCgFoCEdAmlgSB5HEuXV9lChoBkdAcPH99tuUEGgHTUQBaAhHQJpYc8vEjxF1fZQoaAZHQHEJogq3EydoB0vWaAhHQJpYwL4N7Sl1fZQoaAZHQHFtDWGyon9oB0v9aAhHQJpcQKSgXdl1fZQoaAZHQHH/Kol2NedoB00GAWgIR0CaXddtVJcxdX2UKGgGR0BvCAV6/qPfaAdL2WgIR0CaXtG9YfW+dX2UKGgGR0BwAex3V09yaAdL/2gIR0CaXximEXchdX2UKGgGR0Bu+NNSIgvEaAdL4WgIR0CaYEIu5BkadX2UKGgGR0BwW8gRsdkraAdL3GgIR0CaYH29cry2dX2UKGgGR0BxJteb/ffoaAdNCwFoCEdAmmDd+9allHV9lChoBkdAYmwmfoRqXWgHTegDaAhHQJpjGtOmBOJ1fZQoaAZHQGRwOB19v0hoB03oA2gIR0CaZVt7rs0IdX2UKGgGR0BwA1e3QUpNaAdL6GgIR0CaZqSUTtb+dX2UKGgGR0Bv+CnLq2SdaAdNsQNoCEdAmmdeIuXeFnV9lChoBkdAbxUlfqoqC2gHTQEDaAhHQJpoL6Q/5cl1fZQoaAZHQHH5iDIzWPNoB038AmgIR0CaaXadc0LudX2UKGgGR0ByLI1pCa7VaAdL1GgIR0Caa3HMEA5rdX2UKGgGR0Bwdp4Z/CqIaAdL62gIR0Caa8zq8lHCdX2UKGgGR0BxFs7o0Q9SaAdNFwFoCEdAmm30D2alUXV9lChoBkdAYn9q20AtF2gHTegDaAhHQJpuSAz544Z1fZQoaAZHQHGKkVi4J/poB00hAWgIR0CacDDE3sHCdX2UKGgGR0BunzTvy9VWaAdLz2gIR0CacDjx0+1SdX2UKGgGR0Bw89OP/7zkaAdL+mgIR0CacEyoXKr8dX2UKGgGR0BxAjv9cbBHaAdL4WgIR0CacWzVMEiddX2UKGgGR0BvxjYqXnhbaAdN4gFoCEdAmnKuCXhOxnV9lChoBkdAbqhSWqtHQWgHTTABaAhHQJpzGTvAoG91fZQoaAZHQHEngM2FWXFoB00DAWgIR0Cac3k6tDD1dX2UKGgGR0BuP4ZQ53kgaAdL5GgIR0CadARdyDIzdX2UKGgGR0BkRIEOiFj/aAdN6ANoCEdAmnRqQvHtGHV9lChoBkdAcf61YQrc02gHS/toCEdAmnSF7laKUHV9lChoBkdAcNMp0OmR/2gHS/loCEdAmnZmYnfEXXV9lChoBkdAb48rYGt6omgHS+doCEdAmneTuWrwOXV9lChoBkdAcVoLqlgtvmgHTS8BaAhHQJp30caOxSp1fZQoaAZHQG42ywwCbMJoB0v/aAhHQJp4cEvCdjJ1fZQoaAZHQHFGMYMvysloB0vsaAhHQJp43Y6GQCF1fZQoaAZHQHNCymuTzNFoB0vXaAhHQJp5uaUiY9h1fZQoaAZHQHH9vfwZwXJoB0vjaAhHQJp5uL9/BnB1fZQoaAZHQHLkhCQcPvtoB01QAWgIR0Caeta6STyKdX2UKGgGR0Bw2mE0zj3maAdL+GgIR0Cae549X9zfdX2UKGgGR0BkhnBrN4Z/aAdN6ANoCEdAmnwd+G47R3V9lChoBkdAcTYLrX18LWgHS/toCEdAmnw2AG0NSnV9lChoBkdAcVMhvze41GgHTSABaAhHQJp9NBSk0rN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}