{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78524983f520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78524983f5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78524983f640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78524983f6d0>", "_build": "<function ActorCriticPolicy._build at 0x78524983f760>", "forward": "<function ActorCriticPolicy.forward at 0x78524983f7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78524983f880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78524983f910>", "_predict": "<function ActorCriticPolicy._predict at 0x78524983f9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78524983fa30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78524983fac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78524983fb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x785249840900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718283100938342338, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaT8D10kAw/B5mHvtabmr4xZOy9ChgGvQAAAAAAAAAAABDDuhToprq9qiG4qT8Zs8yTJ7ntnjk3AACAPwAAgD8Ahr28FCisuoPNjzrZIuE3pL8lupzNKLkAAIA/AACAP1qZoD32XBO6l9rJOkbZ1jVBE/w5FtHwuQAAgD8AAIA/WvuUPSlMXrqWcI65ILSetPWxfjsqLqc4AACAPwAAgD9Ns+M9sNJEP+5zs72hz3O+0WEFPfGBnbsAAAAAAAAAAE3SKD0pZD26UkaPOWucFTXCFKc7BH2muAAAgD8AAIA/OgxJPqhemLw9O/47T9FGumTsBL7L7x27AACAPwAAgD+a1Jy9Ur12P7U5cTxa8oi+MUaIvNOBKj0AAAAAAAAAAGDtS746zxY+E6tDPoRCW77Lgo08QkAEvQAAAAAAAAAAGvM/vaMoiz4F3849IfVNvqWvfLv5wxI8AAAAAAAAAAAz9JY+VptAP518f706IIG+p2ugPRpfHr4AAAAAAAAAADNHm7tco3G63bnKO9rqabRS++I60MySswAAgD8AAIA/GjQdvcPxTLoN/5877TJ5OAp/ljsSEai4AACAPwAAgD8A6wg9hcvZuVY3EDo8gCS0sAaeO/tZLbkAAIA/AACAPyYrxz2kQD25i+b5uWRkFDQ+dFs6ngWPswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF3RBN21Ul2MAWyUTegDjAF0lEdAmfIvexfOU3V9lChoBkdAYq0ckMTewmgHTegDaAhHQJnyo+iaiK11fZQoaAZHQGA5MQmNR3xoB03oA2gIR0CaBYLlFMIvdX2UKGgGR0Bf9p1eSjgyaAdN6ANoCEdAmga90mtyP3V9lChoBkdAY2OdCmdiD2gHTegDaAhHQJoIo+Sr5qN1fZQoaAZHQGFV0se4kNZoB03oA2gIR0CaDPra/RE4dX2UKGgGR0BkJ9oakyk9aAdN6ANoCEdAmhd7vb48EHV9lChoBkdAYgM51/2Cd2gHTegDaAhHQJoaWpEQXhx1fZQoaAZHQGGgPGhmGudoB03oA2gIR0CaGtpg1FYudX2UKGgGR0BgFhQJokAxaAdN6ANoCEdAmh8bXcxj8XV9lChoBkdAWJnk3juKGmgHTegDaAhHQJolKh4+r2h1fZQoaAZHQGVM7gTAWSFoB03oA2gIR0CaJoxO+IuXdX2UKGgGR0Bh9xN9H+ZPaAdN6ANoCEdAmivXoHLRr3V9lChoBkdAZTSEoOQQtmgHTegDaAhHQJos6TKT0QN1fZQoaAZHQFsSrbxmTTxoB03oA2gIR0CaL7DWsijddX2UKGgGR0BD2Fe4TbnHaAdNJQFoCEdAmjBZAUtZm3V9lChoBkdAYYOlY2bXpWgHTegDaAhHQJo0MxYaHbh1fZQoaAZHQGY9mY8dPtVoB03oA2gIR0CaNsfgJkXldX2UKGgGR0BiZQDTz/ZNaAdN6ANoCEdAmkiGZAprlHV9lChoBkdAYVJZ13dKumgHTegDaAhHQJpXHUpd8iR1fZQoaAZHQGBNI7eVLSNoB03oA2gIR0CaWLeg+QlsdX2UKGgGR0BkKmtEG7jDaAdN6ANoCEdAmltJ3gUDdXV9lChoBkdAYjGee4Cp32gHTegDaAhHQJphlJEpiJB1fZQoaAZHQGE8Emplz2hoB03oA2gIR0CabXUWl/H6dX2UKGgGR0BiaVVHWjGlaAdN6ANoCEdAmnCS4vvjO3V9lChoBkdAZdunXumaY2gHTegDaAhHQJp1rNSqEOB1fZQoaAZHQF+mkELYwqRoB03oA2gIR0Cae8RQJokBdX2UKGgGR0BkXo1cdHUdaAdN6ANoCEdAmn0dGmUGFHV9lChoBkdAZvd2C/XXiGgHTegDaAhHQJqCMxk/bCd1fZQoaAZHQGbXBXKbKA9oB03oA2gIR0CagzbW3BpIdX2UKGgGR0Bd720u14PgaAdN6ANoCEdAmoYZMcp9Z3V9lChoBkdAY3tNDc/MXGgHTegDaAhHQJqHAjgQ6IZ1fZQoaAZHQGI4QcxTKkloB03oA2gIR0CajI3dsSCfdX2UKGgGR0BjwX2f029+aAdN6ANoCEdAmpEg9V3ljnV9lChoBkdAZBvhBJI1+GgHTegDaAhHQJqRmkyk9EF1fZQoaAZHQHFwFJQLux9oB02KAWgIR0CatW2FFlTWdX2UKGgGR0BjvJ/Aj6eoaAdN6ANoCEdAmreUwJw84nV9lChoBkdAYFPOUt7KJWgHTegDaAhHQJq43tw71Zl1fZQoaAZHQFsXfeDWbw1oB03oA2gIR0CauvEMspXqdX2UKGgGR0BghQV/MGHIaAdN6ANoCEdAmr+A9zOopHV9lChoBkdAXtTjYI0IkmgHTegDaAhHQJrO+m0mdAh1fZQoaAZHQGIYBX0XgtRoB03oA2gIR0Ca0iju8brDdX2UKGgGR0Bj8AizLOiWaAdN6ANoCEdAmtc/WpZOi3V9lChoBkdAZUrl90A93mgHTegDaAhHQJrcnQPZqVR1fZQoaAZHQFzPUlzEJjVoB03oA2gIR0Ca3dABT4tZdX2UKGgGR0BlLWCAc1fmaAdN6ANoCEdAmuHLcj7hvXV9lChoBkdAXunYvnKW9mgHTegDaAhHQJrk/VFx4pt1fZQoaAZHQGOBHcUM5OtoB03oA2gIR0Ca5bcLSeAedX2UKGgGR0BlufJ5mh/RaAdN6ANoCEdAmumy4nWrfnV9lChoBkdAZFsgbIcR2GgHTegDaAhHQJrsYLCvX9R1fZQoaAZHQFziTd+G47RoB03oA2gIR0Ca7Kgv114gdX2UKGgGR0BwfvcHnlnzaAdN6wFoCEdAmu3ER3/xUnV9lChoBkdAYN9+aScLB2gHTegDaAhHQJsNYV2zOX51fZQoaAZHQGKgQPqcEvFoB03oA2gIR0CbDzS3b212dX2UKGgGR0BgNwccU/OdaAdN6ANoCEdAmxBA1JlJ6XV9lChoBkdAYZwlsP8Q7WgHTegDaAhHQJsSBYdQwbl1fZQoaAZHQGR8FXRw6yVoB03oA2gIR0CbFpPAwfyPdX2UKGgGR0Bj1kPrfLs9aAdN6ANoCEdAmySWHYYixHV9lChoBkdAY7WKWLP2PGgHTegDaAhHQJsqBKUVzp51fZQoaAZHQGErUhV2icpoB03oA2gIR0CbMbAo5PuYdX2UKGgGR0Bgx2Jiy6czaAdN6ANoCEdAmzNnaakRBnV9lChoBkdAYX927nPmgmgHTegDaAhHQJs4fqs2ehB1fZQoaAZHQGOdny3CsOpoB03oA2gIR0CbO/gmqo60dX2UKGgGR0Bfor+5vtMPaAdN6ANoCEdAmzy5P69CeHV9lChoBkdAZTWFGoaUA2gHTegDaAhHQJtA7posZpB1fZQoaAZHQGKoG/WUbDNoB03oA2gIR0CbQ+8q4H5adX2UKGgGR0BjVs8gZCOWaAdN6ANoCEdAm0RCIYWLxnV9lChoBkdAZDcAksz2vmgHTegDaAhHQJtFjq5byH51fZQoaAZHQGNnkcKgIyFoB03oA2gIR0CbZXA2hqTKdX2UKGgGR0Bj2OwJPZZkaAdN6ANoCEdAm2fJZ4fOlnV9lChoBkdAYhkqPwNLDmgHTegDaAhHQJtpZV3ljmV1fZQoaAZHQGVpXV09yLhoB03oA2gIR0Cba5Gza9K3dX2UKGgGR0BkdSVnmJWOaAdN6ANoCEdAm2/CcwxnF3V9lChoBkdAWT6uq3mV7mgHTegDaAhHQJt95E0BOpN1fZQoaAZHQF2c8kD6nBNoB03oA2gIR0Cbgwy+Yc//dX2UKGgGR0BgNBe1KGtZaAdN6ANoCEdAm4i+S0Sh8XV9lChoBkdAYVV13dKujmgHTegDaAhHQJuJ/jaPCEZ1fZQoaAZHQF2L2B8QZoBoB03oA2gIR0CbjiRJEpiJdX2UKGgGR0BgPng9/z8QaAdN6ANoCEdAm5EqDkELY3V9lChoBkdAYlJbblA/s2gHTegDaAhHQJuR38P4EfV1fZQoaAZHQGaiqdYnv2JoB03oA2gIR0CblyKnvUjLdX2UKGgGR0BkkxhWo3rEaAdN6ANoCEdAm5rj+m3vyHV9lChoBkdAYKjSn+AEuGgHTegDaAhHQJubQxesxPB1fZQoaAZHQGLzeRxLkCFoB03oA2gIR0CbnL/IKc/ddX2UKGgGR0Bw2yJfpljFaAdNsAFoCEdAm7c+lXRw63V9lChoBkdAYer8/lhgE2gHTegDaAhHQJu64X9BKL91fZQoaAZHQGY930wrUb1oB03oA2gIR0CbvHwYLsrvdX2UKGgGR0Bf4BzaK1ohaAdN6ANoCEdAm718rRSgoXV9lChoBkdAZXyzzErGzmgHTegDaAhHQJu/LNUwSJ11fZQoaAZHQGdvz/yXlbNoB03oA2gIR0CbwxNwBHTadX2UKGgGR0BlGBg3Lmp3aAdN6ANoCEdAm9OT90ihWnV9lChoBkdAXtu4rjHXE2gHTegDaAhHQJvYsCbMHKR1fZQoaAZHQGYRGAkLQX1oB03oA2gIR0Cb3suyu6mPdX2UKGgGR0BjcyhJyyUtaAdN6ANoCEdAm+Kj72tdRnV9lChoBkdAY+3xm03OwGgHTegDaAhHQJvlh4QjD9B1fZQoaAZHQGDtD7IkqtpoB03oA2gIR0Cb5jQIUrTZdX2UKGgGR0Bgce4LCvX9aAdN6ANoCEdAm+ne0w8GLXV9lChoBkdAY0ASFoL5RGgHTegDaAhHQJvsOYhMajx1fZQoaAZHQGSYF05lvqFoB03oA2gIR0Cb7HsIVuaXdX2UKGgGR0BjKYzN2TxHaAdN6ANoCEdAm+2G+GoJiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |