File size: 1,579 Bytes
0192e0e ae0bf9d 0192e0e ae0bf9d 0192e0e 29a509c 6266e55 ae0bf9d 0192e0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dignity-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dignity-classifier
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5157
- Accuracy: 0.8678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7722 | 1.0 | 98 | 0.7799 | 0.6897 |
| 0.4301 | 2.0 | 196 | 0.4704 | 0.8477 |
| 0.2445 | 3.0 | 294 | 0.5107 | 0.8305 |
| 0.1626 | 4.0 | 392 | 0.5553 | 0.8477 |
| 0.0653 | 5.0 | 490 | 0.5157 | 0.8678 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|