edoaurahman
commited on
Commit
Β·
0c0d157
1
Parent(s):
6b8f2dc
add model and training history files
Browse files- .DS_Store +0 -0
- history.pkl +3 -0
- leaf-classification.ipynb +268 -0
- model.h5 +3 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
history.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d95747f94399425cdedd72d4a586dff9f0898dac03bd35d9d653d2c515151d84
|
3 |
+
size 796
|
leaf-classification.ipynb
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 17,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# import libraries\n",
|
10 |
+
"import tensorflow as tf\n",
|
11 |
+
"from tensorflow.keras import layers, models\n",
|
12 |
+
"from matplotlib import pyplot as plt\n",
|
13 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 18,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "stdout",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
"Found 1674 images belonging to 8 classes.\n",
|
26 |
+
"Found 157 images belonging to 8 classes.\n",
|
27 |
+
"Found 79 images belonging to 8 classes.\n"
|
28 |
+
]
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"source": [
|
32 |
+
"TRAIN_DIR = 'dataset/train'\n",
|
33 |
+
"TEST_DIR = 'dataset/test'\n",
|
34 |
+
"VAL_DIR = 'dataset/val'\n",
|
35 |
+
"# Load dataset\n",
|
36 |
+
"datagen = ImageDataGenerator(rescale=1./255)\n",
|
37 |
+
"# Load data dari direktori menggunakan flow_from_directory\n",
|
38 |
+
"train_generator = datagen.flow_from_directory(\n",
|
39 |
+
" TRAIN_DIR,\n",
|
40 |
+
" target_size=(224, 224), # Sesuaikan dengan ukuran gambar input model\n",
|
41 |
+
" batch_size=32,\n",
|
42 |
+
" class_mode='categorical'\n",
|
43 |
+
")\n",
|
44 |
+
"\n",
|
45 |
+
"val_generator = datagen.flow_from_directory(\n",
|
46 |
+
" VAL_DIR,\n",
|
47 |
+
" target_size=(224, 224),\n",
|
48 |
+
" batch_size=32,\n",
|
49 |
+
" class_mode='categorical'\n",
|
50 |
+
")\n",
|
51 |
+
"\n",
|
52 |
+
"test_generator = datagen.flow_from_directory(\n",
|
53 |
+
" TEST_DIR,\n",
|
54 |
+
" target_size=(224, 224),\n",
|
55 |
+
" batch_size=32,\n",
|
56 |
+
" class_mode='categorical',\n",
|
57 |
+
" shuffle=False # Untuk testing, tidak perlu shuffle\n",
|
58 |
+
")"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 21,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"data": {
|
68 |
+
"text/plain": [
|
69 |
+
"{'Daun Jambu Biji': 0,\n",
|
70 |
+
" 'Daun Kemangi': 1,\n",
|
71 |
+
" 'Daun Kunyit': 2,\n",
|
72 |
+
" 'Daun Mint': 3,\n",
|
73 |
+
" 'Daun Pepaya': 4,\n",
|
74 |
+
" 'Daun Sirih': 5,\n",
|
75 |
+
" 'Daun Sirsak': 6,\n",
|
76 |
+
" 'Lidah Buaya': 7}"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
"execution_count": 21,
|
80 |
+
"metadata": {},
|
81 |
+
"output_type": "execute_result"
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"train_generator.class_indices"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 22,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"name": "stderr",
|
95 |
+
"output_type": "stream",
|
96 |
+
"text": [
|
97 |
+
"/Users/edoaurahman/development/anaconda/anaconda3/envs/tensorflow/lib/python3.10/site-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
98 |
+
" super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"
|
99 |
+
]
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"source": [
|
103 |
+
"model = models.Sequential()\n",
|
104 |
+
"\n",
|
105 |
+
"model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))\n",
|
106 |
+
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
107 |
+
"model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n",
|
108 |
+
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
109 |
+
"model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n",
|
110 |
+
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
111 |
+
"model.add(layers.Conv2D(128, (3, 3), activation='relu'))\n",
|
112 |
+
"model.add(layers.MaxPooling2D((2, 2)))\n",
|
113 |
+
"\n",
|
114 |
+
"model.add(layers.Flatten())\n",
|
115 |
+
"model.add(layers.Dense(128, activation='relu'))\n",
|
116 |
+
"model.add(layers.Dense(3, activation='softmax'))\n",
|
117 |
+
"\n",
|
118 |
+
"model.compile(optimizer='adam',\n",
|
119 |
+
" loss='sparse_categorical_crossentropy',\n",
|
120 |
+
" metrics=['accuracy'])\n",
|
121 |
+
" "
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 23,
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [
|
129 |
+
{
|
130 |
+
"data": {
|
131 |
+
"text/html": [
|
132 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_2\"</span>\n",
|
133 |
+
"</pre>\n"
|
134 |
+
],
|
135 |
+
"text/plain": [
|
136 |
+
"\u001b[1mModel: \"sequential_2\"\u001b[0m\n"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"metadata": {},
|
140 |
+
"output_type": "display_data"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"text/html": [
|
145 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">βββββββββββββββββββββββββββββββββββ³βββββββββββββββββββββββββ³ββββββββββββββββ\n",
|
146 |
+
"β<span style=\"font-weight: bold\"> Layer (type) </span>β<span style=\"font-weight: bold\"> Output Shape </span>β<span style=\"font-weight: bold\"> Param # </span>β\n",
|
147 |
+
"β‘βββββββββββββββββοΏ½οΏ½οΏ½βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
148 |
+
"β conv2d_6 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">224</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">224</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">896</span> β\n",
|
149 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
150 |
+
"β max_pooling2d_6 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">112</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">112</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
151 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
152 |
+
"β conv2d_7 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">112</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">112</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">18,496</span> β\n",
|
153 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
154 |
+
"β max_pooling2d_7 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">56</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">56</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
155 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
156 |
+
"β conv2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">56</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">56</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">73,856</span> β\n",
|
157 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
158 |
+
"β max_pooling2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
159 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
160 |
+
"β flatten_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Flatten</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">100352</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
161 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
162 |
+
"β dense_4 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">12,845,184</span> β\n",
|
163 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
164 |
+
"β dense_5 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">3</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">387</span> β\n",
|
165 |
+
"βββββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββ\n",
|
166 |
+
"</pre>\n"
|
167 |
+
],
|
168 |
+
"text/plain": [
|
169 |
+
"βββββββββββββββββββββββββββββββββββ³βββββββββββββββββββββββββ³ββββββββββββββββ\n",
|
170 |
+
"β\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mβ\n",
|
171 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
172 |
+
"β conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m32\u001b[0m) β \u001b[38;5;34m896\u001b[0m β\n",
|
173 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
174 |
+
"β max_pooling2d_6 (\u001b[38;5;33mMaxPooling2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m32\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
175 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
176 |
+
"β conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m64\u001b[0m) β \u001b[38;5;34m18,496\u001b[0m β\n",
|
177 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
178 |
+
"β max_pooling2d_7 (\u001b[38;5;33mMaxPooling2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m64\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
179 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
180 |
+
"β conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m128\u001b[0m) β \u001b[38;5;34m73,856\u001b[0m β\n",
|
181 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
182 |
+
"β max_pooling2d_8 (\u001b[38;5;33mMaxPooling2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m128\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
183 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββοΏ½οΏ½οΏ½βΌββββββββββββββββ€\n",
|
184 |
+
"β flatten_2 (\u001b[38;5;33mFlatten\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100352\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
185 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
186 |
+
"β dense_4 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) β \u001b[38;5;34m12,845,184\u001b[0m β\n",
|
187 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
188 |
+
"β dense_5 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3\u001b[0m) β \u001b[38;5;34m387\u001b[0m β\n",
|
189 |
+
"βββββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββ\n"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"metadata": {},
|
193 |
+
"output_type": "display_data"
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"data": {
|
197 |
+
"text/html": [
|
198 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">12,938,819</span> (49.36 MB)\n",
|
199 |
+
"</pre>\n"
|
200 |
+
],
|
201 |
+
"text/plain": [
|
202 |
+
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m12,938,819\u001b[0m (49.36 MB)\n"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
"metadata": {},
|
206 |
+
"output_type": "display_data"
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"data": {
|
210 |
+
"text/html": [
|
211 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">12,938,819</span> (49.36 MB)\n",
|
212 |
+
"</pre>\n"
|
213 |
+
],
|
214 |
+
"text/plain": [
|
215 |
+
"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m12,938,819\u001b[0m (49.36 MB)\n"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"metadata": {},
|
219 |
+
"output_type": "display_data"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"data": {
|
223 |
+
"text/html": [
|
224 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
|
225 |
+
"</pre>\n"
|
226 |
+
],
|
227 |
+
"text/plain": [
|
228 |
+
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "display_data"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"model.summary()"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": null,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": []
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"metadata": {
|
248 |
+
"kernelspec": {
|
249 |
+
"display_name": "tensorflow",
|
250 |
+
"language": "python",
|
251 |
+
"name": "python3"
|
252 |
+
},
|
253 |
+
"language_info": {
|
254 |
+
"codemirror_mode": {
|
255 |
+
"name": "ipython",
|
256 |
+
"version": 3
|
257 |
+
},
|
258 |
+
"file_extension": ".py",
|
259 |
+
"mimetype": "text/x-python",
|
260 |
+
"name": "python",
|
261 |
+
"nbconvert_exporter": "python",
|
262 |
+
"pygments_lexer": "ipython3",
|
263 |
+
"version": "3.10.14"
|
264 |
+
}
|
265 |
+
},
|
266 |
+
"nbformat": 4,
|
267 |
+
"nbformat_minor": 2
|
268 |
+
}
|
model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd97d47c870b54bcf1d899023a8adef2a04f2fb147f06db5aad466874cd41570
|
3 |
+
size 116248888
|