eduagarcia
commited on
Commit
•
e9d7237
1
Parent(s):
6d9f1d3
Update README.md
Browse files
README.md
CHANGED
@@ -57,7 +57,7 @@ metrics:
|
|
57 |
---
|
58 |
# RoBERTaLexPT-base
|
59 |
|
60 |
-
RoBERTaLexPT-base is pretrained from LegalPT and CrawlPT corpora, using [RoBERTa-base](https://huggingface.co/FacebookAI/roberta-base), introduced by [Liu et al. (2019)](https://arxiv.org/abs/1907.11692).
|
61 |
|
62 |
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
|
63 |
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
|
@@ -83,9 +83,11 @@ Macro F1-Score (\%) for multiple models evaluated on PortuLex benchmark test spl
|
|
83 |
| [Legal-XLM-R-base](https://arxiv.org/abs/2306.02069) | 87.48 | 83.49/83.16 | 79.79 | 82.35 | 83.24 |
|
84 |
| [Legal-XLM-R-large](https://arxiv.org/abs/2306.02069) | 88.39 | 84.65/84.55 | 79.36 | 81.66 | 83.50 |
|
85 |
| [Legal-RoBERTa-PT-large](https://arxiv.org/abs/2306.02069) | 87.96 | 88.32/84.83 | 79.57 | 81.98 | 84.02 |
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
|
|
|
|
89 |
|
90 |
In summary, RoBERTaLexPT consistently achieves top legal NLP effectiveness despite its base size.
|
91 |
With sufficient pre-training data, it can surpass overparameterized models. The results highlight the importance of domain-diverse training data over sheer model scale.
|
|
|
57 |
---
|
58 |
# RoBERTaLexPT-base
|
59 |
|
60 |
+
RoBERTaLexPT-base is a Portuguese Masked Language Model pretrained from scratch from the [LegalPT](https://huggingface.co/datasets/eduagarcia/LegalPT) and CrawlPT corpora, using the same architecture as [RoBERTa-base](https://huggingface.co/FacebookAI/roberta-base), introduced by [Liu et al. (2019)](https://arxiv.org/abs/1907.11692).
|
61 |
|
62 |
- **Language(s) (NLP):** Brazilian Portuguese (pt-BR)
|
63 |
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
|
|
|
83 |
| [Legal-XLM-R-base](https://arxiv.org/abs/2306.02069) | 87.48 | 83.49/83.16 | 79.79 | 82.35 | 83.24 |
|
84 |
| [Legal-XLM-R-large](https://arxiv.org/abs/2306.02069) | 88.39 | 84.65/84.55 | 79.36 | 81.66 | 83.50 |
|
85 |
| [Legal-RoBERTa-PT-large](https://arxiv.org/abs/2306.02069) | 87.96 | 88.32/84.83 | 79.57 | 81.98 | 84.02 |
|
86 |
+
| **Ours** | | | | | |
|
87 |
+
| RoBERTaTimbau-base (Reproduction of BERTimbau) | 89.68 | 87.53/85.74 | 78.82 | 82.03 | 84.29 |
|
88 |
+
| RoBERTaLegalPT-base (Trained on LegalPT) | 90.59 | 85.45/84.40 | 79.92 | 82.84 | 84.57 |
|
89 |
+
| RoBERTaCrawlPT-base (Trained on CrawlPT) | 89.24 | 88.22/86.58 | 79.88 | 82.80 | 84.83 |
|
90 |
+
| RoBERTaLexPT-base (this) (Trained on CrawlPT + LegalPT) | **90.73** | **88.56**/86.03 | **80.40** | 83.22 | **85.41** |
|
91 |
|
92 |
In summary, RoBERTaLexPT consistently achieves top legal NLP effectiveness despite its base size.
|
93 |
With sufficient pre-training data, it can surpass overparameterized models. The results highlight the importance of domain-diverse training data over sheer model scale.
|