Corrected README
Browse files
README.md
CHANGED
@@ -1,126 +1,59 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
tags:
|
4 |
-
- sentence-transformers
|
5 |
-
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
- transformers
|
8 |
---
|
9 |
|
10 |
-
# {MODEL_NAME}
|
11 |
-
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
-
|
14 |
-
<!--- Describe your model here -->
|
15 |
-
|
16 |
-
## Usage (Sentence-Transformers)
|
17 |
-
|
18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
-
|
20 |
-
```
|
21 |
-
pip install -U sentence-transformers
|
22 |
-
```
|
23 |
-
|
24 |
-
Then you can use the model like this:
|
25 |
-
|
26 |
-
```python
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
-
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
-
```
|
34 |
-
|
35 |
|
|
|
36 |
|
37 |
-
##
|
38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
|
40 |
-
|
41 |
-
from transformers import AutoTokenizer, AutoModel
|
42 |
-
import torch
|
43 |
|
|
|
44 |
|
45 |
-
|
46 |
-
def mean_pooling(model_output, attention_mask):
|
47 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
|
|
|
51 |
|
52 |
-
|
53 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
-
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
|
59 |
-
|
60 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
|
62 |
-
|
63 |
-
with torch.no_grad():
|
64 |
-
model_output = model(**encoded_input)
|
65 |
|
66 |
-
|
67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
|
69 |
-
print("Sentence embeddings:")
|
70 |
-
print(sentence_embeddings)
|
71 |
```
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
-
|
81 |
-
|
82 |
-
## Training
|
83 |
-
The model was trained with the parameters:
|
84 |
-
|
85 |
-
**DataLoader**:
|
86 |
-
|
87 |
-
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
|
88 |
-
```
|
89 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
```
|
91 |
|
92 |
-
|
93 |
|
94 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
95 |
-
|
96 |
-
Parameters of the fit()-Method:
|
97 |
```
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
"max_grad_norm": 1,
|
104 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
105 |
-
"optimizer_params": {
|
106 |
-
"lr": 2e-05
|
107 |
-
},
|
108 |
-
"scheduler": "WarmupLinear",
|
109 |
-
"steps_per_epoch": null,
|
110 |
-
"warmup_steps": 144,
|
111 |
-
"weight_decay": 0.01
|
112 |
-
}
|
113 |
```
|
114 |
|
|
|
115 |
|
116 |
-
## Full Model Architecture
|
117 |
-
```
|
118 |
-
SentenceTransformer(
|
119 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
120 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
-
)
|
122 |
-
```
|
123 |
|
124 |
-
##
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: es
|
3 |
+
datasets:
|
4 |
+
- stsb_multi_mt
|
5 |
tags:
|
|
|
|
|
6 |
- sentence-similarity
|
7 |
+
- sentence-transformers
|
8 |
---
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
This is a test model that was fine-tuned using the Spanish datasets from [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) in order to understand and benchmark STS models.
|
12 |
|
13 |
+
## Model and training data description
|
|
|
14 |
|
15 |
+
This model was built taking `distiluse-base-multilingual-cased-v1` and training it on a Semantic Textual Similarity task using a modified version of the training script for STS from Sentece Transformers (the modified script is included in the repo). It was trained using the Spanish datasets from [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) which are the STSBenchmark datasets automatically translated to other languages using deepl.com. Refer to the dataset repository for more details.
|
|
|
|
|
16 |
|
17 |
+
## Intended uses & limitations
|
18 |
|
19 |
+
This model was built just as a proof-of-concept on STS fine-tuning using Spanish data and no specific use other than getting a sense on how this training works.
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
## How to use
|
22 |
|
23 |
+
You may use it as any other STS trained model to extract sentence embeddings. Check Sentence Transformers documentation.
|
|
|
24 |
|
25 |
+
## Training procedure
|
|
|
|
|
26 |
|
27 |
+
This model was trained using this [Colab Notebook](https://colab.research.google.com/drive/1ZNjDMFdy_lKhnD9BtbqzSbQ4LNz638ZA?usp=sharing)
|
|
|
28 |
|
29 |
+
## Evaluation results
|
|
|
|
|
30 |
|
31 |
+
Evaluating `distiluse-base-multilingual-cased-v1` on the Spanish test dataset before training results in:
|
|
|
32 |
|
|
|
|
|
33 |
```
|
34 |
+
2021-07-06 17:44:46 - EmbeddingSimilarityEvaluator: Evaluating the model on dataset:
|
35 |
+
2021-07-06 17:45:00 - Cosine-Similarity : Pearson: 0.7662 Spearman: 0.7583
|
36 |
+
2021-07-06 17:45:00 - Manhattan-Distance: Pearson: 0.7805 Spearman: 0.7772
|
37 |
+
2021-07-06 17:45:00 - Euclidean-Distance: Pearson: 0.7816 Spearman: 0.7778
|
38 |
+
2021-07-06 17:45:00 - Dot-Product-Similarity: Pearson: 0.6610 Spearman: 0.6536
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
```
|
40 |
|
41 |
+
While the fine-tuned version with the defaults of the training script and the Spanish training dataset results in:
|
42 |
|
|
|
|
|
|
|
43 |
```
|
44 |
+
2021-07-06 17:49:22 - EmbeddingSimilarityEvaluator: Evaluating the model on stsb-multi-mt-test dataset:
|
45 |
+
2021-07-06 17:49:24 - Cosine-Similarity : Pearson: 0.8265 Spearman: 0.8207
|
46 |
+
2021-07-06 17:49:24 - Manhattan-Distance: Pearson: 0.8131 Spearman: 0.8190
|
47 |
+
2021-07-06 17:49:24 - Euclidean-Distance: Pearson: 0.8129 Spearman: 0.8190
|
48 |
+
2021-07-06 17:49:24 - Dot-Product-Similarity: Pearson: 0.7773 Spearman: 0.7692
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
```
|
50 |
|
51 |
+
In our [STS Evaluation repository](https://github.com/eduardofv/sts_eval) we compare the performance of this model with other models from Sentence Transformers and Tensorflow Hub using the standard STSBenchmark and the 2017 STSBenchmark Task 3 for Spanish.
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
## Resources
|
55 |
|
56 |
+
- Training dataset [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)
|
57 |
+
- Sentence Transformers [Semantic Textual Similarity](https://www.sbert.net/examples/training/sts/README.html)
|
58 |
+
- Check [sts_eval](https://github.com/eduardofv/sts_eval) for a comparison with Tensorflow and Sentence-Transformers models
|
59 |
+
- Check the [development environment to run the scripts and evaluation](https://github.com/eduardofv/ai-denv)
|