File size: 2,241 Bytes
a2b4168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
model-index:
- name: phi-3-mini-LoRA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-3-mini-LoRA
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1716 | 0.1809 | 100 | 0.6639 |
| 0.6253 | 0.3618 | 200 | 0.5865 |
| 0.5772 | 0.5427 | 300 | 0.5753 |
| 0.5823 | 0.7237 | 400 | 0.5703 |
| 0.5862 | 0.9046 | 500 | 0.5673 |
| 0.5804 | 1.0855 | 600 | 0.5652 |
| 0.5776 | 1.2664 | 700 | 0.5641 |
| 0.5721 | 1.4473 | 800 | 0.5630 |
| 0.5725 | 1.6282 | 900 | 0.5623 |
| 0.5708 | 1.8091 | 1000 | 0.5615 |
| 0.5714 | 1.9900 | 1100 | 0.5611 |
| 0.5685 | 2.1710 | 1200 | 0.5607 |
| 0.5618 | 2.3519 | 1300 | 0.5605 |
| 0.5789 | 2.5328 | 1400 | 0.5605 |
| 0.5716 | 2.7137 | 1500 | 0.5600 |
| 0.5626 | 2.8946 | 1600 | 0.5601 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |