--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large_test_9e-6 results: [] --- # deberta-v3-large_test_9e-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1640 - Accuracy: 0.794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 310 | 0.6535 | 0.772 | | 0.6202 | 2.0 | 620 | 0.6425 | 0.798 | | 0.6202 | 3.0 | 930 | 0.7958 | 0.782 | | 0.1527 | 4.0 | 1240 | 1.0140 | 0.796 | | 0.0448 | 5.0 | 1550 | 1.0381 | 0.796 | | 0.0448 | 6.0 | 1860 | 1.1083 | 0.798 | | 0.017 | 7.0 | 2170 | 1.1640 | 0.794 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2