File size: 9,183 Bytes
fab33af 414f335 c743eab 414f335 fab33af 325b99f 29670e9 a59d310 619c163 08e7799 97a071f f12ea6d e1c6c8a ab9f58c 67b42d7 2cfcdfb 338aa6f f88f52e b57901c b5767c7 287d9da 616cc95 24c0d4c 29c414a a44396d 22e6c0e f9a94a3 0189c1a 0285e33 3a89dfb 84ba101 14d0f32 1e0c319 5f07f9b 779a6c7 351dbc2 66fa104 7524eb0 45858ac 89ffa68 231e90a 8c46e33 9bbc112 c743eab 414f335 fab33af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0160
- Train End Logits Accuracy: 0.9874
- Train Start Logits Accuracy: 0.9958
- Validation Loss: 1.7644
- Validation End Logits Accuracy: 0.7868
- Validation Start Logits Accuracy: 0.7962
- Epoch: 41
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 5474, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 2.3428 | 0.4160 | 0.4317 | 1.3438 | 0.5611 | 0.6458 | 0 |
| 1.1526 | 0.6261 | 0.6397 | 1.0597 | 0.6677 | 0.7429 | 1 |
| 0.7612 | 0.7269 | 0.7647 | 1.0245 | 0.7210 | 0.7806 | 2 |
| 0.5528 | 0.7836 | 0.8319 | 1.2436 | 0.7116 | 0.7712 | 3 |
| 0.4667 | 0.8340 | 0.8435 | 1.0705 | 0.7524 | 0.7555 | 4 |
| 0.3834 | 0.8813 | 0.8687 | 1.1209 | 0.7586 | 0.7712 | 5 |
| 0.3678 | 0.8634 | 0.8876 | 1.2341 | 0.7618 | 0.7649 | 6 |
| 0.2555 | 0.9044 | 0.9181 | 1.1561 | 0.7649 | 0.8056 | 7 |
| 0.2151 | 0.9160 | 0.9328 | 1.0908 | 0.7931 | 0.7994 | 8 |
| 0.1855 | 0.9286 | 0.9475 | 1.2809 | 0.7994 | 0.7774 | 9 |
| 0.1654 | 0.9443 | 0.9454 | 1.3974 | 0.7837 | 0.7806 | 10 |
| 0.1282 | 0.9464 | 0.9517 | 1.4260 | 0.7774 | 0.7837 | 11 |
| 0.1313 | 0.9443 | 0.9601 | 1.4537 | 0.7900 | 0.7962 | 12 |
| 0.1301 | 0.9517 | 0.9590 | 1.1851 | 0.7774 | 0.8150 | 13 |
| 0.1089 | 0.9548 | 0.9590 | 1.2442 | 0.7774 | 0.8088 | 14 |
| 0.1023 | 0.9601 | 0.9622 | 1.4575 | 0.7931 | 0.7931 | 15 |
| 0.0956 | 0.9590 | 0.9685 | 1.5160 | 0.7837 | 0.7900 | 16 |
| 0.0712 | 0.9727 | 0.9737 | 1.5741 | 0.7900 | 0.8088 | 17 |
| 0.0752 | 0.9674 | 0.9790 | 1.4401 | 0.7931 | 0.7994 | 18 |
| 0.0604 | 0.9737 | 0.9779 | 1.6410 | 0.7962 | 0.8088 | 19 |
| 0.0497 | 0.9758 | 0.9821 | 1.5655 | 0.7962 | 0.8119 | 20 |
| 0.0668 | 0.9685 | 0.9811 | 1.3480 | 0.7806 | 0.7962 | 21 |
| 0.0567 | 0.9769 | 0.9800 | 1.3820 | 0.7900 | 0.8088 | 22 |
| 0.0550 | 0.9769 | 0.9832 | 1.3593 | 0.7806 | 0.8056 | 23 |
| 0.0399 | 0.9821 | 0.9884 | 1.5254 | 0.7868 | 0.7931 | 24 |
| 0.0320 | 0.9842 | 0.9874 | 1.5801 | 0.7868 | 0.7994 | 25 |
| 0.0296 | 0.9832 | 0.9884 | 1.6310 | 0.7962 | 0.7962 | 26 |
| 0.0307 | 0.9863 | 0.9926 | 1.4756 | 0.7774 | 0.7900 | 27 |
| 0.0254 | 0.9863 | 0.9895 | 1.7564 | 0.7774 | 0.7931 | 28 |
| 0.0255 | 0.9853 | 0.9937 | 1.6061 | 0.7774 | 0.7962 | 29 |
| 0.0214 | 0.9863 | 0.9937 | 1.7697 | 0.7712 | 0.8056 | 30 |
| 0.0283 | 0.9842 | 0.9863 | 1.8398 | 0.7806 | 0.7900 | 31 |
| 0.0182 | 0.9905 | 0.9926 | 1.8756 | 0.7837 | 0.7994 | 32 |
| 0.0252 | 0.9832 | 0.9947 | 1.8182 | 0.7837 | 0.7962 | 33 |
| 0.0222 | 0.9863 | 0.9947 | 1.7854 | 0.7837 | 0.7931 | 34 |
| 0.0216 | 0.9884 | 0.9947 | 1.5707 | 0.7931 | 0.8025 | 35 |
| 0.0161 | 0.9937 | 0.9916 | 1.7071 | 0.7806 | 0.8025 | 36 |
| 0.0146 | 0.9926 | 0.9926 | 1.7827 | 0.7868 | 0.7962 | 37 |
| 0.0148 | 0.9905 | 0.9947 | 1.8678 | 0.7868 | 0.7931 | 38 |
| 0.0117 | 0.9884 | 0.9968 | 1.7944 | 0.7868 | 0.7900 | 39 |
| 0.0137 | 0.9905 | 0.9958 | 1.7666 | 0.7900 | 0.7931 | 40 |
| 0.0160 | 0.9874 | 0.9958 | 1.7644 | 0.7868 | 0.7962 | 41 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|