edyfjm07's picture
Training in progress epoch 41
414f335
|
raw
history blame
9.18 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
    results: []

edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0160
  • Train End Logits Accuracy: 0.9874
  • Train Start Logits Accuracy: 0.9958
  • Validation Loss: 1.7644
  • Validation End Logits Accuracy: 0.7868
  • Validation Start Logits Accuracy: 0.7962
  • Epoch: 41

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 5474, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
2.3428 0.4160 0.4317 1.3438 0.5611 0.6458 0
1.1526 0.6261 0.6397 1.0597 0.6677 0.7429 1
0.7612 0.7269 0.7647 1.0245 0.7210 0.7806 2
0.5528 0.7836 0.8319 1.2436 0.7116 0.7712 3
0.4667 0.8340 0.8435 1.0705 0.7524 0.7555 4
0.3834 0.8813 0.8687 1.1209 0.7586 0.7712 5
0.3678 0.8634 0.8876 1.2341 0.7618 0.7649 6
0.2555 0.9044 0.9181 1.1561 0.7649 0.8056 7
0.2151 0.9160 0.9328 1.0908 0.7931 0.7994 8
0.1855 0.9286 0.9475 1.2809 0.7994 0.7774 9
0.1654 0.9443 0.9454 1.3974 0.7837 0.7806 10
0.1282 0.9464 0.9517 1.4260 0.7774 0.7837 11
0.1313 0.9443 0.9601 1.4537 0.7900 0.7962 12
0.1301 0.9517 0.9590 1.1851 0.7774 0.8150 13
0.1089 0.9548 0.9590 1.2442 0.7774 0.8088 14
0.1023 0.9601 0.9622 1.4575 0.7931 0.7931 15
0.0956 0.9590 0.9685 1.5160 0.7837 0.7900 16
0.0712 0.9727 0.9737 1.5741 0.7900 0.8088 17
0.0752 0.9674 0.9790 1.4401 0.7931 0.7994 18
0.0604 0.9737 0.9779 1.6410 0.7962 0.8088 19
0.0497 0.9758 0.9821 1.5655 0.7962 0.8119 20
0.0668 0.9685 0.9811 1.3480 0.7806 0.7962 21
0.0567 0.9769 0.9800 1.3820 0.7900 0.8088 22
0.0550 0.9769 0.9832 1.3593 0.7806 0.8056 23
0.0399 0.9821 0.9884 1.5254 0.7868 0.7931 24
0.0320 0.9842 0.9874 1.5801 0.7868 0.7994 25
0.0296 0.9832 0.9884 1.6310 0.7962 0.7962 26
0.0307 0.9863 0.9926 1.4756 0.7774 0.7900 27
0.0254 0.9863 0.9895 1.7564 0.7774 0.7931 28
0.0255 0.9853 0.9937 1.6061 0.7774 0.7962 29
0.0214 0.9863 0.9937 1.7697 0.7712 0.8056 30
0.0283 0.9842 0.9863 1.8398 0.7806 0.7900 31
0.0182 0.9905 0.9926 1.8756 0.7837 0.7994 32
0.0252 0.9832 0.9947 1.8182 0.7837 0.7962 33
0.0222 0.9863 0.9947 1.7854 0.7837 0.7931 34
0.0216 0.9884 0.9947 1.5707 0.7931 0.8025 35
0.0161 0.9937 0.9916 1.7071 0.7806 0.8025 36
0.0146 0.9926 0.9926 1.7827 0.7868 0.7962 37
0.0148 0.9905 0.9947 1.8678 0.7868 0.7931 38
0.0117 0.9884 0.9968 1.7944 0.7868 0.7900 39
0.0137 0.9905 0.9958 1.7666 0.7900 0.7931 40
0.0160 0.9874 0.9958 1.7644 0.7868 0.7962 41

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1