efainman commited on
Commit
90d1ab6
·
1 Parent(s): fce4ea1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 636.36 +/- 110.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:739d7eee008a40419c53045c1001d732f10da89f9e30ec27ffb75c940003c107
3
+ size 129246
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a094040a8c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a094040a950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a094040a9e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a094040aa70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a094040ab00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a094040ab90>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a094040ac20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a094040acb0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a094040ad40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a094040add0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a094040ae60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a094040aef0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a0940414f40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1690547019520459345,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADdGyz4q/y2/mVmMPvnjP71I+TDA+jAoQDbW2b9hOLe94reUv6jssD5ry52+mvWdvkfJuD2Hvae/oypdP+mINj1CIe097zbZv7dBzL9lmlG/4IOiPhV/PkARnD6/vamOProqBj/L9KQ+2z8GP683rr+Udqy9vJQWQNAq+r8u50+/n8jCPkVhvD1ewzLASTTTPgSX87+mgva7JqpHv9THGrybwc4/cA0WvOFiaD6nxSk9f+OxP+xWbL2GuTzAn4wDPSyUar8eMg89EZ47QFekRjq6KgY/y/SkPj0V9L8yFjw/xY8HP1ZBhD1k8Bo/139Av1GED8AmIAFA97EMwF/WQL5eKb+/C3JavS7n5L3OLuy+hoorPzLn0b/3JFw/7NLVPApYFL/ApEzAc1ervze8kT1lCCo/Bb5mQJaoNb+3l4m8uioGP8v0pD49FfS/rzeuv2Mzgr9PZWs/XTAIP1MW1z4RpG+/ZN05vbjh+r3/RK69Kw2bv73P+D6mjOC+qkkCP2MFW764qfQ/U4I/P0CijbjeowXA8zcTu5s0FT8ShEA/6xTsP8/bC8DjXCS/IVdHP7oqBj/L9KQ+2z8GP683rr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADspJW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb4rqPAAAAACqhvq/AAAAAMYN/zwAAAAANv/kPwAAAABO4YK9AAAAAF8D7z8AAAAAG4b/PQAAAACW//i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyinNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIbAzbwAAAAAv+79vwAAAABO0r29AAAAAJrP/z8AAAAAcesqvAAAAACmB/Q/AAAAABG4B74AAAAAs/rivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxsCTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5ed09AAAAAA52578AAAAAMNkBPgAAAACfm/M/AAAAAJkD8bwAAAAACaXoPwAAAACpesG9AAAAACcy2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsNK02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAezCovQAAAACOl+6/AAAAAJ9y4z0AAAAAAlLzPwAAAADWFAO9AAAAAFrq7j8AAAAAaCZjvQAAAABH5+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIeRnSncclyMAWyUTegDjAF0lEdAscrxXA/LT3V9lChoBkdAhjQAFgUlA2gHTegDaAhHQLHLQnvUjLV1fZQoaAZHQIHqKHoHLRtoB03oA2gIR0Cxy323fAKwdX2UKGgGR0B/VoleF+NMaAdN6ANoCEdAsc0XjCHh0nV9lChoBkdAdQovc8DB/WgHTegDaAhHQLHRgnJkoWp1fZQoaAZHQHMEgUQCjlBoB03oA2gIR0Cx0dVvES/TdX2UKGgGR0B8icPnSv1UaAdN6ANoCEdAsdIN72L5ynV9lChoBkdAcEbI55qubWgHTegDaAhHQLHTmqY7aIx1fZQoaAZHQIwb9TDO1OVoB03oA2gIR0Cx2S3Sa3I/dX2UKGgGR0B1pbkXDWK/aAdN6ANoCEdAsdl/lFMIvHV9lChoBkdAi9c1X/5tWWgHTegDaAhHQLHZtsAvL5h1fZQoaAZHQIsj6f6GgzxoB03oA2gIR0Cx20PHggoxdX2UKGgGR0CK/0BjFyaNaAdN6ANoCEdAsd+EuzyBkXV9lChoBkdAiqVh91EE1WgHTegDaAhHQLHf2wYcebN1fZQoaAZHQI0BNp48loloB03oA2gIR0Cx4BKdhAnldX2UKGgGR0CMaHdO6/ZeaAdN6ANoCEdAseGan752yXV9lChoBkdAd2iVlPJq7GgHTegDaAhHQLHnH6yB06p1fZQoaAZHQH34lr2xptdoB03oA2gIR0Cx529l2/zrdX2UKGgGR0B/3CFajesQaAdN6ANoCEdAseemWrwOOXV9lChoBkdAf8YvL5h0AGgHTegDaAhHQLHpNms/6ft1fZQoaAZHQIisBCdBjWloB03oA2gIR0Cx7YQBtDUmdX2UKGgGR0CK5CxW1c+raAdN6ANoCEdAse3VyS3b23V9lChoBkdAfGuA2Q4jr2gHTegDaAhHQLHuEpPAO8V1fZQoaAZHQHrbyX6ZYxNoB03EA2gIR0Cx72HNke6qdX2UKGgGR0B5+6FrVOKwaAdNfANoCEdAsfTUOd5IH3V9lChoBkdAelOxrzoUz2gHTegDaAhHQLH1OJul41R1fZQoaAZHQHXciiItUXJoB03oA2gIR0Cx9cF8ohIOdX2UKGgGR0B7ZoaaTfSAaAdN6ANoCEdAsfcZDkU9IXV9lChoBkdAhkTH8jzI3mgHTegDaAhHQLH7NXrdFfB1fZQoaAZHQIgWd56dDploB03oA2gIR0Cx+5Mf7rLRdX2UKGgGR0CBftTJhfBvaAdN6ANoCEdAsfwc2gnMMnV9lChoBkdAgab7XYlIE2gHTegDaAhHQLH9kiyIHkd1fZQoaAZHQFxwFqBVdX1oB02FAWgIR0CyAR7K3d9EdX2UKGgGR0B6vrC66J66aAdN6ANoCEdAsgLNZeRgZ3V9lChoBkdAfqJGLDQ7cWgHTegDaAhHQLIDLMW43FV1fZQoaAZHQHRBmJBPbfxoB03oA2gIR0CyA7epsGgSdX2UKGgGR0CALgBmwqy4aAdN6ANoCEdAsgeC3fAKv3V9lChoBkdAeoD1bJOnEWgHTegDaAhHQLIJKuoP07N1fZQoaAZHQH3dTKT0QK9oB03oA2gIR0CyCY4TsY2sdX2UKGgGR0CANDYq5LAYaAdN6ANoCEdAsgoYlByCF3V9lChoBkdAgmWxIz3yqmgHTegDaAhHQLIPF4XXRPZ1fZQoaAZHQH1b2RRuTA5oB03oA2gIR0CyENLOqvNedX2UKGgGR0B/OSKsMiKSaAdN6ANoCEdAshEzV+Zw43V9lChoBkdAgsm5pSJj2GgHTegDaAhHQLIRuybQTmJ1fZQoaAZHQJBQx0fYBeZoB03oA2gIR0CyFZVme18cdX2UKGgGR0CB9lo8p1A8aAdN6ANoCEdAshc8oTfzjHV9lChoBkdAj80zsyBTXWgHTegDaAhHQLIXnC4SYgJ1fZQoaAZHQIJIVRekYXRoB03oA2gIR0CyGCRHPNVzdX2UKGgGR0B8SipxWDHwaAdN6ANoCEdAshzy69TP0XV9lChoBkdAilczfBN21WgHTegDaAhHQLIekO2RaHN1fZQoaAZHQI96ULH+6y1oB03oA2gIR0CyHu+cpb2UdX2UKGgGR0CSBivHtF8YaAdN6ANoCEdAsh99d7fHgnV9lChoBkdAkDYbdN34bmgHTegDaAhHQLIjNzsQd0d1fZQoaAZHQJCUO+g13t9oB03oA2gIR0CyJNdbHIZJdX2UKGgGR0CEtrORkmQbaAdN6ANoCEdAsiU3xgAp8XV9lChoBkdAjziZTho/RmgHTegDaAhHQLIl6eOGTLZ1fZQoaAZHQH0DHA6+36RoB03oA2gIR0CyKrIV/MGHdX2UKGgGR0Bw1GFj/dZaaAdN6ANoCEdAsixWERJ2+3V9lChoBkdAdSPmCROk+GgHTegDaAhHQLIsvp7kXDZ1fZQoaAZHQImYYe5nUUhoB03oA2gIR0CyLUcibDuSdX2UKGgGR0CIQSAvL5h0aAdN6ANoCEdAsjEUEJSiunV9lChoBkdAgqUqKpDNQmgHTegDaAhHQLIyx0Sh8IB1fZQoaAZHQIcxNhVlwtJoB03oA2gIR0CyM0St3fQ8dX2UKGgGR0CC1EMOPNmlaAdN6ANoCEdAsjQajCYTkHV9lChoBkdAfsAFirksBmgHTegDaAhHQLI4k48lolF1fZQoaAZHQIY1FzhgmZ5oB03oA2gIR0CyOi4zJp35dX2UKGgGR0CGOOhzvJA/aAdN6ANoCEdAsjqTTWoWHnV9lChoBkdAgAaNBfKISGgHTegDaAhHQLI7Ivysjml1fZQoaAZHQIasFe4TbnJoB03oA2gIR0CyPsp7w8W9dX2UKGgGR0B+wXFsHjZMaAdN6ANoCEdAskBv1VYISnV9lChoBkdAezHuqFRHgGgHTegDaAhHQLJA/4fOlft1fZQoaAZHQH/nrLEDQqtoB03oA2gIR0CyQcLfgrH3dX2UKGgGR0B1BxVvMr3CaAdN6ANoCEdAskYms2eg+XV9lChoBkdAe2vy5qdpZmgHTegDaAhHQLJHx+F10T11fZQoaAZHQIArw1DSgGtoB03oA2gIR0CySCj4+KTCdX2UKGgGR0B1VjVoYekpaAdN6ANoCEdAskiuXPZ7HHV9lChoBkdAf0OgyM1jzGgHTegDaAhHQLJMfon8baR1fZQoaAZHQH/C8+aBqbloB03oA2gIR0CyTk+4Cp3pdX2UKGgGR0CADZaRp1zRaAdN6ANoCEdAsk7bLns9jnV9lChoBkdAc4U91U2kz2gHTegDaAhHQLJPmr7fpEB1fZQoaAZHQIR02yRjjJdoB03oA2gIR0CyU8kq6OHWdX2UKGgGR0B+f+Jiy6czaAdN6ANoCEdAslVz5j6N2nV9lChoBkdAelBB68g6l2gHTegDaAhHQLJV0yZa3Zx1fZQoaAZHQH/ek8V58jRoB03oA2gIR0CyVlUALiMpdX2UKGgGR0B8Y+2x6fJ4aAdN6ANoCEdAsloLNA1NxnV9lChoBkdAe8l2fTTfBWgHTegDaAhHQLJb6ANXo1V1fZQoaAZHQG3bvitJWeZoB03oA2gIR0CyXG0f5k9VdX2UKGgGR0CEKY1iONo8aAdN6ANoCEdAsl0rhWHUMHV9lChoBkdAhBV0DuBtlGgHTegDaAhHQLJhRJJ5E+h1fZQoaAZHQIv1HfuTibVoB03oA2gIR0CyYuadMCcPdX2UKGgGR0CJmgAjIJZ4aAdN6ANoCEdAsmNFpaiblXV9lChoBkdAhyuxJmNBGGgHTegDaAhHQLJjyl6JIlN1fZQoaAZHQIzOnR3NcGFoB03oA2gIR0CyZ4BjOLR8dX2UKGgGR0CDTle7cwg1aAdN6ANoCEdAsmlsTh5xBHV9lChoBkdAiZHBDw6QvGgHTegDaAhHQLJp+dTHbRF1fZQoaAZHQIKVbGFSKm9oB03oA2gIR0CyarzV6NVBdX2UKGgGR0CIBZcRDkU9aAdN6ANoCEdAsm6/RE4NqnV9lChoBkdAgOktwiqyW2gHTegDaAhHQLJwXornTy91fZQoaAZHQIMbuvOhTOxoB03oA2gIR0CycLnkYGdJdX2UKGgGR0CDS+RgZ0jkaAdN6ANoCEdAsnE5vaURnXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987bab3b13f2e3cdb42d212455b059e9a91b88ccdc434ca1a4cc0845cc14e62f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff9b243f4589d2d53ceedac3d4b1a26cdf8e5f3e6447c10e740bc779a996e69
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a094040a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a094040a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a094040a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a094040aa70>", "_build": "<function ActorCriticPolicy._build at 0x7a094040ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7a094040ab90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a094040ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a094040acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a094040ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a094040add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a094040ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a094040aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0940414f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690547019520459345, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADdGyz4q/y2/mVmMPvnjP71I+TDA+jAoQDbW2b9hOLe94reUv6jssD5ry52+mvWdvkfJuD2Hvae/oypdP+mINj1CIe097zbZv7dBzL9lmlG/4IOiPhV/PkARnD6/vamOProqBj/L9KQ+2z8GP683rr+Udqy9vJQWQNAq+r8u50+/n8jCPkVhvD1ewzLASTTTPgSX87+mgva7JqpHv9THGrybwc4/cA0WvOFiaD6nxSk9f+OxP+xWbL2GuTzAn4wDPSyUar8eMg89EZ47QFekRjq6KgY/y/SkPj0V9L8yFjw/xY8HP1ZBhD1k8Bo/139Av1GED8AmIAFA97EMwF/WQL5eKb+/C3JavS7n5L3OLuy+hoorPzLn0b/3JFw/7NLVPApYFL/ApEzAc1ervze8kT1lCCo/Bb5mQJaoNb+3l4m8uioGP8v0pD49FfS/rzeuv2Mzgr9PZWs/XTAIP1MW1z4RpG+/ZN05vbjh+r3/RK69Kw2bv73P+D6mjOC+qkkCP2MFW764qfQ/U4I/P0CijbjeowXA8zcTu5s0FT8ShEA/6xTsP8/bC8DjXCS/IVdHP7oqBj/L9KQ+2z8GP683rr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADspJW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb4rqPAAAAACqhvq/AAAAAMYN/zwAAAAANv/kPwAAAABO4YK9AAAAAF8D7z8AAAAAG4b/PQAAAACW//i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlyinNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIbAzbwAAAAAv+79vwAAAABO0r29AAAAAJrP/z8AAAAAcesqvAAAAACmB/Q/AAAAABG4B74AAAAAs/rivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxsCTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5ed09AAAAAA52578AAAAAMNkBPgAAAACfm/M/AAAAAJkD8bwAAAAACaXoPwAAAACpesG9AAAAACcy2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsNK02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAezCovQAAAACOl+6/AAAAAJ9y4z0AAAAAAlLzPwAAAADWFAO9AAAAAFrq7j8AAAAAaCZjvQAAAABH5+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIeRnSncclyMAWyUTegDjAF0lEdAscrxXA/LT3V9lChoBkdAhjQAFgUlA2gHTegDaAhHQLHLQnvUjLV1fZQoaAZHQIHqKHoHLRtoB03oA2gIR0Cxy323fAKwdX2UKGgGR0B/VoleF+NMaAdN6ANoCEdAsc0XjCHh0nV9lChoBkdAdQovc8DB/WgHTegDaAhHQLHRgnJkoWp1fZQoaAZHQHMEgUQCjlBoB03oA2gIR0Cx0dVvES/TdX2UKGgGR0B8icPnSv1UaAdN6ANoCEdAsdIN72L5ynV9lChoBkdAcEbI55qubWgHTegDaAhHQLHTmqY7aIx1fZQoaAZHQIwb9TDO1OVoB03oA2gIR0Cx2S3Sa3I/dX2UKGgGR0B1pbkXDWK/aAdN6ANoCEdAsdl/lFMIvHV9lChoBkdAi9c1X/5tWWgHTegDaAhHQLHZtsAvL5h1fZQoaAZHQIsj6f6GgzxoB03oA2gIR0Cx20PHggoxdX2UKGgGR0CK/0BjFyaNaAdN6ANoCEdAsd+EuzyBkXV9lChoBkdAiqVh91EE1WgHTegDaAhHQLHf2wYcebN1fZQoaAZHQI0BNp48loloB03oA2gIR0Cx4BKdhAnldX2UKGgGR0CMaHdO6/ZeaAdN6ANoCEdAseGan752yXV9lChoBkdAd2iVlPJq7GgHTegDaAhHQLHnH6yB06p1fZQoaAZHQH34lr2xptdoB03oA2gIR0Cx529l2/zrdX2UKGgGR0B/3CFajesQaAdN6ANoCEdAseemWrwOOXV9lChoBkdAf8YvL5h0AGgHTegDaAhHQLHpNms/6ft1fZQoaAZHQIisBCdBjWloB03oA2gIR0Cx7YQBtDUmdX2UKGgGR0CK5CxW1c+raAdN6ANoCEdAse3VyS3b23V9lChoBkdAfGuA2Q4jr2gHTegDaAhHQLHuEpPAO8V1fZQoaAZHQHrbyX6ZYxNoB03EA2gIR0Cx72HNke6qdX2UKGgGR0B5+6FrVOKwaAdNfANoCEdAsfTUOd5IH3V9lChoBkdAelOxrzoUz2gHTegDaAhHQLH1OJul41R1fZQoaAZHQHXciiItUXJoB03oA2gIR0Cx9cF8ohIOdX2UKGgGR0B7ZoaaTfSAaAdN6ANoCEdAsfcZDkU9IXV9lChoBkdAhkTH8jzI3mgHTegDaAhHQLH7NXrdFfB1fZQoaAZHQIgWd56dDploB03oA2gIR0Cx+5Mf7rLRdX2UKGgGR0CBftTJhfBvaAdN6ANoCEdAsfwc2gnMMnV9lChoBkdAgab7XYlIE2gHTegDaAhHQLH9kiyIHkd1fZQoaAZHQFxwFqBVdX1oB02FAWgIR0CyAR7K3d9EdX2UKGgGR0B6vrC66J66aAdN6ANoCEdAsgLNZeRgZ3V9lChoBkdAfqJGLDQ7cWgHTegDaAhHQLIDLMW43FV1fZQoaAZHQHRBmJBPbfxoB03oA2gIR0CyA7epsGgSdX2UKGgGR0CALgBmwqy4aAdN6ANoCEdAsgeC3fAKv3V9lChoBkdAeoD1bJOnEWgHTegDaAhHQLIJKuoP07N1fZQoaAZHQH3dTKT0QK9oB03oA2gIR0CyCY4TsY2sdX2UKGgGR0CANDYq5LAYaAdN6ANoCEdAsgoYlByCF3V9lChoBkdAgmWxIz3yqmgHTegDaAhHQLIPF4XXRPZ1fZQoaAZHQH1b2RRuTA5oB03oA2gIR0CyENLOqvNedX2UKGgGR0B/OSKsMiKSaAdN6ANoCEdAshEzV+Zw43V9lChoBkdAgsm5pSJj2GgHTegDaAhHQLIRuybQTmJ1fZQoaAZHQJBQx0fYBeZoB03oA2gIR0CyFZVme18cdX2UKGgGR0CB9lo8p1A8aAdN6ANoCEdAshc8oTfzjHV9lChoBkdAj80zsyBTXWgHTegDaAhHQLIXnC4SYgJ1fZQoaAZHQIJIVRekYXRoB03oA2gIR0CyGCRHPNVzdX2UKGgGR0B8SipxWDHwaAdN6ANoCEdAshzy69TP0XV9lChoBkdAilczfBN21WgHTegDaAhHQLIekO2RaHN1fZQoaAZHQI96ULH+6y1oB03oA2gIR0CyHu+cpb2UdX2UKGgGR0CSBivHtF8YaAdN6ANoCEdAsh99d7fHgnV9lChoBkdAkDYbdN34bmgHTegDaAhHQLIjNzsQd0d1fZQoaAZHQJCUO+g13t9oB03oA2gIR0CyJNdbHIZJdX2UKGgGR0CEtrORkmQbaAdN6ANoCEdAsiU3xgAp8XV9lChoBkdAjziZTho/RmgHTegDaAhHQLIl6eOGTLZ1fZQoaAZHQH0DHA6+36RoB03oA2gIR0CyKrIV/MGHdX2UKGgGR0Bw1GFj/dZaaAdN6ANoCEdAsixWERJ2+3V9lChoBkdAdSPmCROk+GgHTegDaAhHQLIsvp7kXDZ1fZQoaAZHQImYYe5nUUhoB03oA2gIR0CyLUcibDuSdX2UKGgGR0CIQSAvL5h0aAdN6ANoCEdAsjEUEJSiunV9lChoBkdAgqUqKpDNQmgHTegDaAhHQLIyx0Sh8IB1fZQoaAZHQIcxNhVlwtJoB03oA2gIR0CyM0St3fQ8dX2UKGgGR0CC1EMOPNmlaAdN6ANoCEdAsjQajCYTkHV9lChoBkdAfsAFirksBmgHTegDaAhHQLI4k48lolF1fZQoaAZHQIY1FzhgmZ5oB03oA2gIR0CyOi4zJp35dX2UKGgGR0CGOOhzvJA/aAdN6ANoCEdAsjqTTWoWHnV9lChoBkdAgAaNBfKISGgHTegDaAhHQLI7Ivysjml1fZQoaAZHQIasFe4TbnJoB03oA2gIR0CyPsp7w8W9dX2UKGgGR0B+wXFsHjZMaAdN6ANoCEdAskBv1VYISnV9lChoBkdAezHuqFRHgGgHTegDaAhHQLJA/4fOlft1fZQoaAZHQH/nrLEDQqtoB03oA2gIR0CyQcLfgrH3dX2UKGgGR0B1BxVvMr3CaAdN6ANoCEdAskYms2eg+XV9lChoBkdAe2vy5qdpZmgHTegDaAhHQLJHx+F10T11fZQoaAZHQIArw1DSgGtoB03oA2gIR0CySCj4+KTCdX2UKGgGR0B1VjVoYekpaAdN6ANoCEdAskiuXPZ7HHV9lChoBkdAf0OgyM1jzGgHTegDaAhHQLJMfon8baR1fZQoaAZHQH/C8+aBqbloB03oA2gIR0CyTk+4Cp3pdX2UKGgGR0CADZaRp1zRaAdN6ANoCEdAsk7bLns9jnV9lChoBkdAc4U91U2kz2gHTegDaAhHQLJPmr7fpEB1fZQoaAZHQIR02yRjjJdoB03oA2gIR0CyU8kq6OHWdX2UKGgGR0B+f+Jiy6czaAdN6ANoCEdAslVz5j6N2nV9lChoBkdAelBB68g6l2gHTegDaAhHQLJV0yZa3Zx1fZQoaAZHQH/ek8V58jRoB03oA2gIR0CyVlUALiMpdX2UKGgGR0B8Y+2x6fJ4aAdN6ANoCEdAsloLNA1NxnV9lChoBkdAe8l2fTTfBWgHTegDaAhHQLJb6ANXo1V1fZQoaAZHQG3bvitJWeZoB03oA2gIR0CyXG0f5k9VdX2UKGgGR0CEKY1iONo8aAdN6ANoCEdAsl0rhWHUMHV9lChoBkdAhBV0DuBtlGgHTegDaAhHQLJhRJJ5E+h1fZQoaAZHQIv1HfuTibVoB03oA2gIR0CyYuadMCcPdX2UKGgGR0CJmgAjIJZ4aAdN6ANoCEdAsmNFpaiblXV9lChoBkdAhyuxJmNBGGgHTegDaAhHQLJjyl6JIlN1fZQoaAZHQIzOnR3NcGFoB03oA2gIR0CyZ4BjOLR8dX2UKGgGR0CDTle7cwg1aAdN6ANoCEdAsmlsTh5xBHV9lChoBkdAiZHBDw6QvGgHTegDaAhHQLJp+dTHbRF1fZQoaAZHQIKVbGFSKm9oB03oA2gIR0CyarzV6NVBdX2UKGgGR0CIBZcRDkU9aAdN6ANoCEdAsm6/RE4NqnV9lChoBkdAgOktwiqyW2gHTegDaAhHQLJwXornTy91fZQoaAZHQIMbuvOhTOxoB03oA2gIR0CycLnkYGdJdX2UKGgGR0CDS+RgZ0jkaAdN6ANoCEdAsnE5vaURnXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (952 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 636.3630936157803, "std_reward": 110.5163979847887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T13:28:39.481747"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:100f930a5cdf8090ca8e539dacb12f4fec31fa37ac733c070c54ad8f145f9067
3
+ size 2176