{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3ca3a67900>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690867352432006598, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP+OJj/AZVu8JC4FP7te5T/5hd4/p4lIP8qdOj9sccu+kA0Jv5JrlT/bRVS/E27uP5Vhnz9J3E4/xCdOvuJTgD+UP4G/siBhvwK0Wj7wjzpAYvqGP9NvwL+SxW0/qQZlP5hYgL8Trgk/hduEPlCCET/ZkhA/lGlPv0fmGD9nvoo/fELJPaeqk785hj0+Ya67vtJ3LD8ZEUe/rwlDvz8wxD9Wuyg+g9juvi3P0L3SboW/f0YcPk99KD/twvE9rvyivV7VfL/4PuQ+kVp3Pvq0IcCYWIC/E64JP4XbhD5QghE/f7NcPwzU5T22p/I+ucUEQPxdHj/MzOo+eqN0vmtKnL9SMQG+tolAv3pRh78cB5m8NXydPrcUKD/eycI+eU1VP44BvLx1FUk/eja5PrrvhTqICXq/RXemvyA97j8mn7Y9mFiAvxOuCT+F24Q+UIIRP6pMBz92nFU/5B2bvDS7kj+gVwA/Vdusvo1web9/YQS/lB+uvwVnEb6GeXG/JFJFP5/oaTyC9Ey99TMOPwv4qj6xGwe/RYwwP7kyxb5YfSPANNe5v8Uy+L0HF5w//nSDvphYgL8Trgk/hduEPlCCET+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOm481AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjLDmPQAAAABmCtm/AAAAAHy9gjwAAAAA38f/PwAAAAAJiMc9AAAAAKWE6j8AAAAA4rIqvQAAAABQ6+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdrXutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMg1CD4AAAAAnSvrvwAAAABVFP89AAAAAMsv5T8AAAAAtsUAvgAAAADlBec/AAAAAJKmWr0AAAAA6w/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq7ojUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMeFU9AAAAACff+b8AAAAAtC26PQAAAADRfvI/AAAAAG6XjLsAAAAAfejoPwAAAAATMXK8AAAAAHAJAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7vX42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGJ2/vQAAAADvz+e/AAAAAA4SAz4AAAAAEDrgPwAAAABTI0q9AAAAAAe8+j8AAAAAV4l5PAAAAAB55tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIU1RiqhlDqMAWyUTegDjAF0lEdAqTkz8zhxYXV9lChoBkdAiNR4LkS26WgHTegDaAhHQKk6xATqSox1fZQoaAZHQIjVQ2wV0tBoB03oA2gIR0CpQPYaYNRWdX2UKGgGR0CEcR0KZ2IPaAdN6ANoCEdAqUSTollbvHV9lChoBkdAhbzppnHvMWgHTegDaAhHQKlHiaw2VFB1fZQoaAZHQH646BNEgGNoB03oA2gIR0CpSKOwosqbdX2UKGgGR0CAzWjesPrfaAdN6ANoCEdAqU3HGMn7YXV9lChoBkdAiXf+eOGTLWgHTegDaAhHQKlRZtQbdad1fZQoaAZHQIQZM3IdU85oB03oA2gIR0CpVUEW69TQdX2UKGgGR0CIybNr0rbyaAdN6ANoCEdAqVbQu/UONHV9lChoBkdAfZWA57w8XGgHTegDaAhHQKlctWFvhqF1fZQoaAZHQJBPjKPn0TVoB03oA2gIR0CpYDylnAZbdX2UKGgGR0B/scTAWSEEaAdN6ANoCEdAqWMh57gKnnV9lChoBkdAjCTf/NqxkmgHTegDaAhHQKlkPwJgLJF1fZQoaAZHQIq4Ys/Y8MdoB03oA2gIR0CpaVCIcinpdX2UKGgGR0CG2SNRWLgoaAdN6ANoCEdAqWzYkVvddnV9lChoBkdAiD2yXUpd8mgHTegDaAhHQKlwwE5hjON1fZQoaAZHQIKL9wYLsrxoB03oA2gIR0CpcnnVG0/odX2UKGgGR0CQcFc9W6siaAdN6ANoCEdAqXgH4mCyyHV9lChoBkdAiiNSiVSn+GgHTegDaAhHQKl7eglF+d91fZQoaAZHQJDR2UzKs+5oB03oA2gIR0CpfllEiMYNdX2UKGgGR0BwpXCtRvWIaAdN6ANoCEdAqX9wDq4YrXV9lChoBkdAkfTy2DxsmGgHTegDaAhHQKmEYDU3GXJ1fZQoaAZHQI26cmhM8HRoB03oA2gIR0Cph8smfGuLdX2UKGgGR0CQ2KRekYXPaAdN6ANoCEdAqYu3Yao/A3V9lChoBkdAkV94LsrupmgHTegDaAhHQKmNShwEQoV1fZQoaAZHQI/OdtwaR6poB03oA2gIR0CpksNp22XtdX2UKGgGR0CS/3lE7W/baAdN6ANoCEdAqZY9a8pTdnV9lChoBkdAkRxZiAlOXWgHTegDaAhHQKmZHLGJemh1fZQoaAZHQJNrmrWAf+1oB03oA2gIR0Cpmil3yI56dX2UKGgGR0CS9qqFRHf/aAdN6ANoCEdAqZ8ckQf6oHV9lChoBkdAkwwRpYcNpmgHTegDaAhHQKmifuw5eZ51fZQoaAZHQJJ4xOJtSAJoB03oA2gIR0CppnQV0tAcdX2UKGgGR0CREZrvsqrjaAdN6ANoCEdAqaf+2uxKQXV9lChoBkdAkw+SoGY8dWgHTegDaAhHQKmtj3evZAZ1fZQoaAZHQJJmWMCLdepoB03oA2gIR0CpsSXhGYrsdX2UKGgGR0CTVE8kD6nBaAdN6ANoCEdAqbQAEfT1CnV9lChoBkdAkuCnAIppe2gHTegDaAhHQKm1DNHpbEB1fZQoaAZHQJI1U6DGtIVoB03oA2gIR0CpueRg7YChdX2UKGgGR0CUKhvwmVqvaAdN6ANoCEdAqb1TkXDWLHV9lChoBkdAkw8twR5C4WgHTegDaAhHQKnBF7Lt/nZ1fZQoaAZHQJIjocp9ZzRoB03oA2gIR0CpwqKPfbbldX2UKGgGR0CSjqrcCYCyaAdN6ANoCEdAqcgneaa1C3V9lChoBkdAk9Fv642CNGgHTegDaAhHQKnLky8BdUt1fZQoaAZHQIwswQtjCpFoB03oA2gIR0CpznwemvW6dX2UKGgGR0CQtZjKgZjyaAdN6ANoCEdAqc+WEAYHgXV9lChoBkdAks/RE8aGYmgHTegDaAhHQKnUlKraM751fZQoaAZHQJJ604jrzGxoB03oA2gIR0Cp2AnlXA/LdX2UKGgGR0CQlM6YE4ecaAdN6ANoCEdAqdvXX2/SIHV9lChoBkdAkntITbnHN2gHTegDaAhHQKndZ9x6v7p1fZQoaAZHQJRYCZa3ZwpoB03oA2gIR0Cp4vMQmNR4dX2UKGgGR0CSsbNYr8R+aAdN6ANoCEdAqeZh4QjD9HV9lChoBkdAlG95cTrVv2gHTegDaAhHQKnpRJLdvbZ1fZQoaAZHQJNGwQBgeBBoB03oA2gIR0Cp6lN0NjLCdX2UKGgGR0CTNA/6fra/aAdN6ANoCEdAqe9nbmEGq3V9lChoBkdAkD61JQLuyGgHTegDaAhHQKny6XJHRTl1fZQoaAZHQI2GmnbZezFoB03oA2gIR0Cp9smj9GZvdX2UKGgGR0CS09+t8uzyaAdN6ANoCEdAqfhU0BOpKnV9lChoBkdAkui/7el9B2gHTegDaAhHQKn9094/u9h1fZQoaAZHQJCyMDzRQadoB03oA2gIR0CqAU8e8wpOdX2UKGgGR0CVzls54nndaAdN6ANoCEdAqgQlolD4QHV9lChoBkdAlNNHlbNbDGgHTegDaAhHQKoFKrsjVx11fZQoaAZHQJWbc2n889xoB03oA2gIR0CqCf4/NZ/1dX2UKGgGR0COhYytV7x/aAdN6ANoCEdAqg1vYUWVNnV9lChoBkdAlhFtE1EVnGgHTegDaAhHQKoRJWdVea91fZQoaAZHQJQlZT6zmfZoB03oA2gIR0CqEqz850bMdX2UKGgGR0CUZ6dZ7ojfaAdN6ANoCEdAqhhLQAuIynV9lChoBkdAk8/FcMVk+WgHTegDaAhHQKobr2Cdz4l1fZQoaAZHQJRcZHEuQIVoB03oA2gIR0CqHosU7CBPdX2UKGgGR0CT+3BSUC7saAdN6ANoCEdAqh+bfWMCLnV9lChoBkdAkGtHFDOTq2gHTegDaAhHQKokf/wRXfZ1fZQoaAZHQJKOrxlQMx5oB03oA2gIR0CqJ+rwWnCPdX2UKGgGR0CRyUNEgGKRaAdN6ANoCEdAqiunWH1vl3V9lChoBkdAjVNdJ8OTaGgHTegDaAhHQKotNxZuAI91fZQoaAZHQJPlat7rs0JoB03oA2gIR0CqMuKHwgDBdX2UKGgGR0CUOlkxREWqaAdN6ANoCEdAqjZPlbNbDHV9lChoBkdAlCl0adc0L2gHTegDaAhHQKo5JQemvW91fZQoaAZHQJYjC4LCvX9oB03oA2gIR0CqOjbjkuHvdX2UKGgGR0CTuog0j1PFaAdN6ANoCEdAqj8WgvlEJHV9lChoBkdAkHcm2sq8UWgHTegDaAhHQKpCnK2a2F51fZQoaAZHQI51+3+dbxFoB03oA2gIR0CqRkRQ79ycdX2UKGgGR0CQaj3s5XEJaAdN6ANoCEdAqkfMstkFwHV9lChoBkdAkekTMRpUP2gHTegDaAhHQKpNdcNYr8R1fZQoaAZHQJAGEfZElVtoB03oA2gIR0CqUO2Hk92YdX2UKGgGR0CJmC2OyVv/aAdN6ANoCEdAqlPUcABDHHV9lChoBkdAk8OdOVPepGgHTegDaAhHQKpU8o/A0sR1fZQoaAZHQJHU8xIre69oB03oA2gIR0CqWdcd5prUdX2UKGgGR0CHFf7TDwYtaAdN6ANoCEdAql1XO+qR2nV9lChoBkdAjiKCVKPGQ2gHTegDaAhHQKpg9D5TIeZ1fZQoaAZHQJMnOFSKm9BoB03oA2gIR0CqYnZxaPjodX2UKGgGR0CSfalv60pmaAdN6ANoCEdAqmhZ1LamGnV9lChoBkdAkeTK15Sm7GgHTegDaAhHQKpr0qoZQ551fZQoaAZHQJC+KNJe3QVoB03oA2gIR0CqbrRQaaTfdX2UKGgGR0CMqsCK77KraAdN6ANoCEdAqm/A7Rv3rXV9lChoBkdAkc6Pnr6ciGgHTegDaAhHQKp0m40dilV1fZQoaAZHQJS/RPCVKPJoB03oA2gIR0CqeAaEi+tbdX2UKGgGR0CUWjfSx7iRaAdN6ANoCEdAqnualBQem3V9lChoBkdAk7DcQmNR32gHTegDaAhHQKp9GTzND+l1fZQoaAZHQJKybVLBbfRoB03oA2gIR0CqguSDIzWPdX2UKGgGR0CTHzCI1tO3aAdN6ANoCEdAqoZOq94/vHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}