File size: 1,084 Bytes
e8bb0ea 04481d5 083a417 04481d5 e8bb0ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
---
pipeline_tag: text-classification
language:
- it
datasets:
- stsb_multi_mt
tags:
- cross-encoder
- sentence-similarity
- transformers
---
# Cross-Encoder
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
<p align="center">
<img src="https://upload.wikimedia.org/wikipedia/commons/f/f6/Edouard_Vuillard%2C_1920c_-_Sunlit_Interior.jpg" width="400"> </br>
Edouard Vuillard, Sunlit Interior
</p>
## Training Data
This model was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
## Usage and Performance
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('efederici/cross-encoder-umberto-stsb')
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
```
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
|