File size: 1,084 Bytes
e8bb0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04481d5
083a417
04481d5
 
 
e8bb0ea
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
pipeline_tag: text-classification
language: 
  - it
datasets:
- stsb_multi_mt
tags:
- cross-encoder
- sentence-similarity
- transformers
---
# Cross-Encoder

This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.

<p align="center">
    <img src="https://upload.wikimedia.org/wikipedia/commons/f/f6/Edouard_Vuillard%2C_1920c_-_Sunlit_Interior.jpg" width="400"> </br>
    Edouard Vuillard, Sunlit Interior
</p>

## Training Data

This model was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences. 

## Usage and Performance

```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('efederici/cross-encoder-umberto-stsb')
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
```

The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.