--- pipeline_tag: sentence-similarity license: apache-2.0 language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-BERTino-v2-mmarco-4m This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a finetuned sentence-BERTino-v2-pt on ~4m mmarco examples. Use `query:` and `passage:` as prefix identifiers for questions and documents respectively. - loss: MultipleNegativesRankingLoss - infrastructure: A100 80GB If you find this project useful, consider supporting its development: [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://bmc.link/edoardofederici) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ "query: Questo è un esempio di frase", "passage: Questo è un ulteriore esempio" ] model = SentenceTransformer('efederici/sentence-BERTino-v2-mmarco-4m') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: 1. pass your input through the transformer model 2. apply the right pooling-operation on-top of the contextualized word embeddings ```python from transformers import AutoTokenizer, AutoModel import torch def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = [ "query: Questo è un esempio di frase", "passage: Questo è un ulteriore esempio" ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m') model = AutoModel.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```