lite-whisper-large-v3-fast / modeling_lite_whisper.py
kamahori's picture
Upload LiteWhisperForConditionalGeneration
7d96429 verified
raw
history blame
2.86 kB
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.models.whisper.configuration_whisper import WhisperConfig
from transformers.models.whisper.modeling_whisper import (
WhisperEncoderLayer,
WhisperEncoder,
WhisperModel,
WhisperForConditionalGeneration,
)
from .configuration_lite_whisper import LiteWhisperConfig
class LinearLowRank(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
low_rank_features: int,
):
super().__init__()
self.weight1 = nn.Parameter(torch.randn(in_features, low_rank_features))
self.weight2 = nn.Parameter(torch.randn(low_rank_features, out_features))
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return (x @ self.weight1) @ self.weight2 + self.bias
class LiteWhisperEncoderLayer(WhisperEncoderLayer):
def __init__(self, config: WhisperConfig, low_rank_config: dict[str, int]):
super().__init__(config)
if "k_proj" in low_rank_config:
self.self_attn.k_proj = LinearLowRank(self.embed_dim, self.embed_dim, low_rank_config["k_proj"])
if "v_proj" in low_rank_config:
self.self_attn.v_proj = LinearLowRank(self.embed_dim, self.embed_dim, low_rank_config["v_proj"])
if "q_proj" in low_rank_config:
self.self_attn.q_proj = LinearLowRank(self.embed_dim, self.embed_dim, low_rank_config["q_proj"])
if "out_proj" in low_rank_config:
self.self_attn.out_proj = LinearLowRank(self.embed_dim, self.embed_dim, low_rank_config["out_proj"])
if "fc1" in low_rank_config:
self.fc1 = LinearLowRank(self.embed_dim, config.encoder_ffn_dim, low_rank_config["fc1"])
if "fc2" in low_rank_config:
self.fc2 = LinearLowRank(config.encoder_ffn_dim, self.embed_dim, low_rank_config["fc2"])
class LiteWhisperEncoder(WhisperEncoder):
def __init__(self, config: WhisperConfig, low_rank_config: list[dict[str, int]]):
super().__init__(config)
self.layers = nn.ModuleList([
LiteWhisperEncoderLayer(config, low_rank_config[i])
for i in range(config.encoder_layers)
])
class LiteWhisperModel(WhisperModel):
def __init__(self, config: WhisperConfig, low_rank_config: list[dict[str, int]]):
super().__init__(config)
self.encoder = LiteWhisperEncoder(config, low_rank_config)
class LiteWhisperForConditionalGeneration(WhisperForConditionalGeneration):
config_class = LiteWhisperConfig
def __init__(self, config: LiteWhisperConfig):
low_rank_config = getattr(config, "low_rank_config", None)
super().__init__(config)
self.model = LiteWhisperModel(config, low_rank_config)