File size: 2,458 Bytes
9fc1c62
 
47b5ca8
9fc1c62
 
 
 
 
 
 
560da6f
9fc1c62
f4e330c
 
4404210
9fc1c62
e9185ce
9fc1c62
 
ea2108a
9fc1c62
0b4b6ae
9fc1c62
 
8e32c30
eabffd4
ea2108a
9fc1c62
 
 
 
 
 
 
 
 
 
ea2108a
9fc1c62
 
ea2108a
e9185ce
 
 
 
fed424d
044ee52
47b5ca8
e9185ce
 
 
fed424d
044ee52
fed424d
044ee52
fed424d
e9185ce
 
a03acbd
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
e9185ce
 
a03acbd
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
044ee52
fed424d
e9185ce
 
 
fed424d
044ee52
fed424d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
datasets:
- ekshat/text-2-sql-with-context
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- text-2-sql
- text-generation
- text2sql
---
# Introduction
Our Model is fine-tuned on Llama-2 7B model on Text-2-SQL Dataset based on Alpaca format described by Stanford. We have used QLora, Bits&Bytes, Accelerate and Transformers Library to implement PEFT concept.
For more information, please visit : https://github.com/akshayhedaoo1/Llama-2-7b-chat-finetune-for-text2sql/tree/Data-Science


# Inference
```python
!pip install transformers accelerate xformers bitsandbytes

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql")

# Loading model in 4 bit precision
model = AutoModelForCausalLM.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql", load_in_4bit=True)

context = "CREATE TABLE head (name VARCHAR, born_state VARCHAR, age VARCHAR)"
question = "List the name, born state and age of the heads of departments ordered by age."

prompt = f"""Below is an context that describes a sql query, paired with an question that provides further information. Write an answer that appropriately completes the request.
### Context:
{context}
### Question:
{question}
### Answer:"""

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(prompt)
print(result[0]['generated_text'])
```


# Model Information
- **model_name = "NousResearch/Llama-2-7b-chat-hf"**

- **dataset_name = "ekshat/text-2-sql-with-context"**


# QLoRA parameters
- **lora_r = 64**

- **lora_alpha = 16**

- **lora_dropout = 0.1**


# BitsAndBytes parameters
- **use_4bit = True**

- **bnb_4bit_compute_dtype = "float16"**

- **bnb_4bit_quant_type = "nf4"**

- **use_nested_quant = False**


# Training Arguments parameters
- **num_train_epochs = 1**

- **fp16 = False**

- **bf16 = False**

- **per_device_train_batch_size = 8**

- **per_device_eval_batch_size = 4**

- **gradient_accumulation_steps = 1**

- **gradient_checkpointing = True**

- **max_grad_norm = 0.3**

- **learning_rate = 2e-4**

- **weight_decay = 0.001**

- **optim = "paged_adamw_32bit"**

- **lr_scheduler_type = "cosine"**

- **max_steps = -1**

- **warmup_ratio = 0.03**

- **group_by_length = True**

- **save_steps = 0**

- **logging_steps = 25**


# SFT parameters
- **max_seq_length = None**

- **packing = False**