julien-c HF staff commited on
Commit
05f5119
·
1 Parent(s): 1f60432

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/elgeish/cs224n-squad2.0-roberta-base/README.md

Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## CS224n SQuAD2.0 Project Dataset
2
+ The goal of this model is to save CS224n students GPU time when establishing
3
+ baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf).
4
+ The training set used to fine-tune this model is the same as
5
+ the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however,
6
+ evaluation and model selection were performed using roughly half of the official
7
+ dev set, 6078 examples, picked at random. The data files can be found at
8
+ <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020
9
+ version. Given that the official SQuAD2.0 dev set contains the project's test
10
+ set, students must make sure not to use the official SQuAD2.0 dev set in any way
11
+ — including the use of models fine-tuned on the official SQuAD2.0, since they
12
+ used the official SQuAD2.0 dev set for model selection.
13
+
14
+ ## Results
15
+ ```json
16
+ {
17
+ "exact": 75.32082922013821,
18
+ "f1": 78.66699523704254,
19
+ "total": 6078,
20
+ "HasAns_exact": 74.84536082474227,
21
+ "HasAns_f1": 81.83436324767868,
22
+ "HasAns_total": 2910,
23
+ "NoAns_exact": 75.75757575757575,
24
+ "NoAns_f1": 75.75757575757575,
25
+ "NoAns_total": 3168,
26
+ "best_exact": 75.32082922013821,
27
+ "best_exact_thresh": 0.0,
28
+ "best_f1": 78.66699523704266,
29
+ "best_f1_thresh": 0.0
30
+ }
31
+ ```
32
+
33
+ ## Notable Arguments
34
+ ```json
35
+ {
36
+ "do_lower_case": true,
37
+ "doc_stride": 128,
38
+ "fp16": false,
39
+ "fp16_opt_level": "O1",
40
+ "gradient_accumulation_steps": 24,
41
+ "learning_rate": 3e-05,
42
+ "max_answer_length": 30,
43
+ "max_grad_norm": 1,
44
+ "max_query_length": 64,
45
+ "max_seq_length": 384,
46
+ "model_name_or_path": "roberta-base",
47
+ "model_type": "roberta",
48
+ "num_train_epochs": 4,
49
+ "per_gpu_train_batch_size": 16,
50
+ "save_steps": 5000,
51
+ "seed": 42,
52
+ "train_batch_size": 16,
53
+ "version_2_with_negative": true,
54
+ "warmup_steps": 0,
55
+ "weight_decay": 0
56
+ }
57
+ ```
58
+
59
+ ## Environment Setup
60
+ ```json
61
+ {
62
+ "transformers": "2.5.1",
63
+ "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0",
64
+ "python": "3.6.5=hc3d631a_2",
65
+ "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux",
66
+ "gpu": "Tesla V100-SXM2-16GB"
67
+ }
68
+ ```
69
+
70
+ ## How to Cite
71
+ ```BibTeX
72
+ @misc{elgeish2020gestalt,
73
+ title={Gestalt: a Stacking Ensemble for SQuAD2.0},
74
+ author={Mohamed El-Geish},
75
+ journal={arXiv e-prints},
76
+ archivePrefix={arXiv},
77
+ eprint={2004.07067},
78
+ year={2020},
79
+ }
80
+ ```
81
+
82
+ ## Related Models
83
+ * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2)
84
+ * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2)
85
+ * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1)
86
+ * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased)