--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy widget: - text: systurnar guðrún og monique voru einar á báti umkringdar eik og víði með þá einu ósk að sameinast fjölskyldu sinni sem fór í smárabíó að horfa á jim carey leika í the eternal sunshine of the spotless mind. model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8396080453842186 - name: Recall type: recall value: 0.7974137931034483 - name: F1 type: f1 value: 0.8179671406320655 - name: Accuracy type: accuracy value: 0.979332840486103 --- # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1048 - Precision: 0.8396 - Recall: 0.7974 - F1: 0.8180 - Accuracy: 0.9793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0739 | 1.0 | 2904 | 0.1219 | 0.8060 | 0.7621 | 0.7834 | 0.9750 | | 0.0438 | 2.0 | 5808 | 0.1130 | 0.8233 | 0.7919 | 0.8073 | 0.9772 | | 0.0317 | 3.0 | 8712 | 0.1048 | 0.8396 | 0.7974 | 0.8180 | 0.9793 | ### Framework versions - Transformers 4.11.1 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3