File size: 2,629 Bytes
b854828 f175443 b854828 f175443 b854828 f175443 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
tags:
- dpo
license: mit
datasets:
- llm-jp/hh-rlhf-12k-ja
language:
- ja
---
## モデル
- ベースモデル:[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- 学習データセット:[llm-jp/hh-rlhf-12k-ja](https://huggingface.co/datasets/llm-jp/hh-rlhf-12k-ja)
- 学習方式:フルパラメータチューニング
## サンプル
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
"ryota39/Phi-3-mini-4k-instruct-dpo",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"ryota39/Phi-3-mini-4k-instruct-dpo",
device_map="auto",
torch_dtype='auto',
trust_remote_code=True,
)
text = "<|user|>\n与えられた質問に対して英語で思考し、日本語で答えてください。東京の観光地を教えてください。\n<|end|>\n<|assistant|>\n"
tokenized_input = tokenizer.encode(
text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
with torch.no_grad():
output = model.generate(
tokenized_input,
max_new_tokens=500,
do_sample=True,
top_p=0.95,
temperature=0.8,
repetition_penalty=1.0
)[0]
print(tokenizer.decode(output))
```
## 出力例
```
<|user|> 与えられた質問に対して英語で思考し、日本語で答えてください。東京の観光地を教えてください。
<|end|><|assistant|> 東京には様々な観光地がありますが、代表的なものとして以下のようなものがあります。
1. 浅草寺(あさくさじ) - 歴史ある寺院で、浅草の様々な景観や、人々が集まる場所です。
2. 東京タワー - 日本の象徴的な電波塔であり、東京の景色を眺めるのに最適な場所です。
3. 皇居(こうこく) - 日本の皇族が住んでいる皇居で、日本の歴史を感じられる郊外もあります。
4. 渋谷スクランブル交差点 - 日本のトレンドを象徴するスクランブル交差点で、最新のストリートファッションやアートを見ることができます。
5. 渋谷の百 ár - 若者の雰囲気を感じられるショップ街で、最新のグッズを見つけることができます。
これらは東京を象徴する一部の観光地ですが、他にもたくさんの観光地がありますので、ご興味のある場所をご確認ください。<|end|>
```
|