Eloghosa Ikponmwoba
commited on
Commit
·
50b9ff0
1
Parent(s):
72eb21f
third trained model upload
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v0.zip +3 -0
- ppo-LunarLander-v0/_stable_baselines3_version +1 -0
- ppo-LunarLander-v0/data +94 -0
- ppo-LunarLander-v0/policy.optimizer.pth +3 -0
- ppo-LunarLander-v0/policy.pth +3 -0
- ppo-LunarLander-v0/pytorch_variables.pth +3 -0
- ppo-LunarLander-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO_v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 272.01 +/- 14.20
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO_v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO_v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651694346.247132, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Mfbwp6Aq6g5QSOPH5rDLnXdK4XxkqtwAAgD8AAIA/AOkuvWe9bz4kths+xkXPvlHWsz3cnR89AAAAAAAAAAAaDAu9Hzb0uya3TDyhU3Q8Gj9avcumTT0AAIA/AACAP037WL2PXie6rsSUujtpGLYTuoE6T0mrOQAAgD8AAIA/TRb2Pa63mLqCtg28wUU7OYwBDbulvx86AAAAAAAAAABmXAs8KeA/unLBVDe+OHky9hdYuh2gdLYAAIA/AACAP81xQT1Ij6y6ykQOun6KnTRf5EA6zeIiOQAAgD8AAIA/ZjQfvFKI9Lv6iwI++eepvhPNUz1m0EO/AAAAAAAAgD/N0Gk81zNduRo/mTT3U+cuJXvZOmiRgLMAAIA/AACAP2a2frz2XBa6g5fBNqawbjLW9Kk72DPjtQAAgD8AAIA/Wr4HPmlYdz+25WY+eT0Gv0ozmz4NEzw+AAAAAAAAAAAm2Yy9rkGBuoLODbbiN8WwHOHutrapKDUAAIA/AACAP4DYNz1w+O8+UIQoPZwg2L6NqnE9WbG3vAAAAAAAAAAAs9hjve5bmj2DjFY9EXSuvrHGyrvNBhG9AAAAAAAAAAAz7Ow9mAd8PzrzQD4qRw6/y0VfPpaMVz0AAAAAAAAAAE10ZL3DeXC6KJLdNkrDMTLvhq+5MIsAtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsmMjEG8PcUCUhpRSlIwBbJRNTgGMAXSUR0Cr+kVZTyavdX2UKGgGaAloD0MIDDohdFBYcUCUhpRSlGgVS89oFkdAq/qIJiRW93V9lChoBmgJaA9DCDYBhuXPpXJAlIaUUpRoFUvfaBZHQKv6wy9EkSp1fZQoaAZoCWgPQwh/3enO0wdzQJSGlFKUaBVLzmgWR0Cr+vzC1qnFdX2UKGgGaAloD0MIvw0xXvMQbkCUhpRSlGgVTQEBaBZHQKv6+5tFa0R1fZQoaAZoCWgPQwjOjlTfeaBzQJSGlFKUaBVNDwFoFkdAq/sgVuaWonV9lChoBmgJaA9DCKorn+U5mnBAlIaUUpRoFU0QAWgWR0Cr+z/PomojdX2UKGgGaAloD0MIr8+c9emDcECUhpRSlGgVS9toFkdAq/tJ22XsxHV9lChoBmgJaA9DCAMLYMpAE3JAlIaUUpRoFUvXaBZHQKv7mH8jzI51fZQoaAZoCWgPQwgv205b499xQJSGlFKUaBVL5mgWR0Cr/Bw1R+BpdX2UKGgGaAloD0MIpMUZw5ykcUCUhpRSlGgVS+9oFkdAq/wmX1J173V9lChoBmgJaA9DCBMn9zuUKnFAlIaUUpRoFUvnaBZHQKv8OfI0ZWJ1fZQoaAZoCWgPQwj/JD53gu1yQJSGlFKUaBVL0mgWR0Cr/GQIUrTZdX2UKGgGaAloD0MI+oBAZxIcc0CUhpRSlGgVS7poFkdAq/xr8Jlar3V9lChoBmgJaA9DCGNkyRzLLHJAlIaUUpRoFUveaBZHQKv8nLxqfvp1fZQoaAZoCWgPQwhUjPM3IYZxQJSGlFKUaBVL4mgWR0Cr/NkTxoZidX2UKGgGaAloD0MIXI/C9ajlcECUhpRSlGgVS/FoFkdAq/zpX+2mYXV9lChoBmgJaA9DCIuLo3ITwXJAlIaUUpRoFUvOaBZHQKv9G8g6ltV1fZQoaAZoCWgPQwi4QILiR19yQJSGlFKUaBVL0GgWR0Cr/VOI68xsdX2UKGgGaAloD0MIoYSZtn/3cUCUhpRSlGgVS8JoFkdAq/1piNKh+XV9lChoBmgJaA9DCI85z9iXYHJAlIaUUpRoFU0BAWgWR0Cr/XrDqGDddX2UKGgGaAloD0MIzEQRUvdZc0CUhpRSlGgVS+toFkdAq/3CjJuEVXV9lChoBmgJaA9DCGjKTj9o93FAlIaUUpRoFUvfaBZHQKv9xqUu+RJ1fZQoaAZoCWgPQwjPhvwzwwdzQJSGlFKUaBVL2WgWR0Cr/gmZ/kNndX2UKGgGaAloD0MIf73CgvvncECUhpRSlGgVS8poFkdAq/5wjbBXS3V9lChoBmgJaA9DCOyFAraD03BAlIaUUpRoFUvDaBZHQKv+nXnyNGV1fZQoaAZoCWgPQwgNx/MZ0JluQJSGlFKUaBVL6WgWR0Cr/sqR2bG4dX2UKGgGaAloD0MImKQyxdzocUCUhpRSlGgVS/BoFkdAq/8AVEd/8XV9lChoBmgJaA9DCO888Zwtm25AlIaUUpRoFUvNaBZHQKv+/r+Haex1fZQoaAZoCWgPQwibrie6boNxQJSGlFKUaBVL4mgWR0Cr/wsBZIQOdX2UKGgGaAloD0MIZ/D3ixk/ckCUhpRSlGgVS+BoFkdAq/+ICMglnnV9lChoBmgJaA9DCDXR56OM9XBAlIaUUpRoFUvUaBZHQKv/nkPMB6t1fZQoaAZoCWgPQwhqNLkYA55yQJSGlFKUaBVL9mgWR0Cr/7xyOq//dX2UKGgGaAloD0MIixcLQ+S/cUCUhpRSlGgVS9loFkdAq//qAOJ+D3V9lChoBmgJaA9DCO+QYoDEt3FAlIaUUpRoFUviaBZHQKwAL8XN1Qt1fZQoaAZoCWgPQwhmSutvCQN0QJSGlFKUaBVL8WgWR0CsAEtlZowmdX2UKGgGaAloD0MINNdppOXNcECUhpRSlGgVS+BoFkdArAB57E5yVHV9lChoBmgJaA9DCBVSflJtznFAlIaUUpRoFUv9aBZHQKwA2XVsk6d1fZQoaAZoCWgPQwg2I4PcxeJxQJSGlFKUaBVL6GgWR0CsEzx5cC5mdX2UKGgGaAloD0MI54pSQvCrcUCUhpRSlGgVS9hoFkdArBNw/FBIF3V9lChoBmgJaA9DCAK7mjxlXUFAlIaUUpRoFUutaBZHQKwTf6F/QSl1fZQoaAZoCWgPQwgH0sWmVfRxQJSGlFKUaBVL42gWR0CsE78IAwPAdX2UKGgGaAloD0MI0hvuI7fhckCUhpRSlGgVS+5oFkdArBQKwD/2kHV9lChoBmgJaA9DCFDj3vxGKnBAlIaUUpRoFUvlaBZHQKwUI3kxREZ1fZQoaAZoCWgPQwhrLGFtTL9zQJSGlFKUaBVL82gWR0CsFExVp9JCdX2UKGgGaAloD0MIgufew6XvckCUhpRSlGgVS+1oFkdArBTlY0VJtnV9lChoBmgJaA9DCAwfEVMirHBAlIaUUpRoFUvNaBZHQKwVGVeKKpF1fZQoaAZoCWgPQwg2kZkLXJNwQJSGlFKUaBVL/WgWR0CsFUVzIV/MdX2UKGgGaAloD0MIIAn7dpKeckCUhpRSlGgVS/BoFkdArBVLZUT+N3V9lChoBmgJaA9DCD7nbteL23BAlIaUUpRoFUvnaBZHQKwV2Cgbp/x1fZQoaAZoCWgPQwjzr+WVa3dyQJSGlFKUaBVL0GgWR0CsFgGJWNm2dX2UKGgGaAloD0MI409UNqx1ckCUhpRSlGgVS8toFkdArBYxrBTGYXV9lChoBmgJaA9DCFABMJ5BjnBAlIaUUpRoFUvOaBZHQKwWVON5t3x1fZQoaAZoCWgPQwjmkqrt5o1yQJSGlFKUaBVL+2gWR0CsFp+NDMNddX2UKGgGaAloD0MIghspW+QCckCUhpRSlGgVTTsBaBZHQKwW6c2itaJ1fZQoaAZoCWgPQwhWKqioep9xQJSGlFKUaBVL6WgWR0CsFwmJ3xFzdX2UKGgGaAloD0MI4nX9gp1ScECUhpRSlGgVS+BoFkdArBde0JF9a3V9lChoBmgJaA9DCAZKCiyAdHFAlIaUUpRoFUvVaBZHQKwXZ95yEL91fZQoaAZoCWgPQwg6It+l1MlxQJSGlFKUaBVL7WgWR0CsF3LzXjEOdX2UKGgGaAloD0MI6gd1kUJscECUhpRSlGgVS8loFkdArBfbXYlIE3V9lChoBmgJaA9DCPmiPV5IXXJAlIaUUpRoFUvIaBZHQKwYBaC+UQl1fZQoaAZoCWgPQwiCdLFpZbRxQJSGlFKUaBVN2QFoFkdArBg6InBtUHV9lChoBmgJaA9DCLwH6L4cLXJAlIaUUpRoFUvZaBZHQKwYYpZwGW51fZQoaAZoCWgPQwhqaW6FsChwQJSGlFKUaBVL4mgWR0CsGIN78ejmdX2UKGgGaAloD0MI4Nv0Z/+8cUCUhpRSlGgVS8ZoFkdArBiea2F36nV9lChoBmgJaA9DCM/ZAkJrHG5AlIaUUpRoFUvNaBZHQKwY/sP8Q7N1fZQoaAZoCWgPQwgzNJ4IIr1wQJSGlFKUaBVL0GgWR0CsGWfPPcBVdX2UKGgGaAloD0MIDtqrj8fgcUCUhpRSlGgVS/JoFkdArBmdCZ4Oc3V9lChoBmgJaA9DCCklBKtq2WVAlIaUUpRoFU3oA2gWR0CsGftSAH3UdX2UKGgGaAloD0MIK76h8BkocUCUhpRSlGgVS8RoFkdArBoJKraM73V9lChoBmgJaA9DCKPmq+Qj+nBAlIaUUpRoFUvmaBZHQKwaGokRjBl1fZQoaAZoCWgPQwhTW+ogb+tzQJSGlFKUaBVL5mgWR0CsGmD3VTaTdX2UKGgGaAloD0MIwAXZsvzDcUCUhpRSlGgVS+poFkdArBp19nbqQnV9lChoBmgJaA9DCNHJUuv9wnBAlIaUUpRoFUvxaBZHQKwa96F/QSl1fZQoaAZoCWgPQwjNPo9RnkJwQJSGlFKUaBVL3mgWR0CsGxehf0EpdX2UKGgGaAloD0MIoBaDhyl5ckCUhpRSlGgVS9JoFkdArBsc1fmcOXV9lChoBmgJaA9DCLGnHf4a8WxAlIaUUpRoFU1GAWgWR0CsGzM4ku6FdX2UKGgGaAloD0MI0nMLXYnYb0CUhpRSlGgVS89oFkdArBs0zKs+3nV9lChoBmgJaA9DCBfvx+0XQW5AlIaUUpRoFUvfaBZHQKwbe05U96l1fZQoaAZoCWgPQwiNQ/0u7FtyQJSGlFKUaBVNFQFoFkdArBuQCdSVGHV9lChoBmgJaA9DCA3k2eXbjnBAlIaUUpRoFUvaaBZHQKwbwOLBKth1fZQoaAZoCWgPQwhwBn+/2BFyQJSGlFKUaBVLwGgWR0CsG/jgydnTdX2UKGgGaAloD0MIuvjbnmBhcECUhpRSlGgVS+1oFkdArBxS5Etuk3V9lChoBmgJaA9DCOj4aHGGmnNAlIaUUpRoFUvVaBZHQKwclZTQ3P11fZQoaAZoCWgPQwiZ1NAGIFlzQJSGlFKUaBVL2mgWR0CsHSbqhUR4dX2UKGgGaAloD0MIUYaqmEoPcUCUhpRSlGgVS+doFkdArB1AsK9f1HV9lChoBmgJaA9DCN+/eXFi929AlIaUUpRoFUv+aBZHQKwdQNuLrHF1fZQoaAZoCWgPQwi4IcZr3ixwQJSGlFKUaBVNFAFoFkdArB1sXBP9DXV9lChoBmgJaA9DCAAC1qrdW3FAlIaUUpRoFUvUaBZHQKwdwjs2NvR1fZQoaAZoCWgPQwg6P8VxoMlxQJSGlFKUaBVL42gWR0CsHdKuKXOXdX2UKGgGaAloD0MIJAwDlpzhckCUhpRSlGgVS+JoFkdArB4PgWJrL3V9lChoBmgJaA9DCNZSQNo/nnFAlIaUUpRoFUvQaBZHQKweO1NQCS11fZQoaAZoCWgPQwikb9I06ANwQJSGlFKUaBVL3WgWR0CsHk+XJHRUdX2UKGgGaAloD0MI6brwg7OccUCUhpRSlGgVS/5oFkdArB5oj4YaYXV9lChoBmgJaA9DCCy4H/CASnJAlIaUUpRoFU0PAWgWR0CsHoOIqLCOdX2UKGgGaAloD0MIEJVGzGzMcUCUhpRSlGgVS9loFkdArB7J5eJHiHV9lChoBmgJaA9DCNDtJY2RbXBAlIaUUpRoFUvQaBZHQKwfCkrwvxp1fZQoaAZoCWgPQwiYE7TJ4VRxQJSGlFKUaBVNCQFoFkdArB8mZ5Rj0HV9lChoBmgJaA9DCLTmx1+adnBAlIaUUpRoFUvnaBZHQKwgIWZ7Xxx1fZQoaAZoCWgPQwiJCtXNReVzQJSGlFKUaBVL5mgWR0CsIDTYdyT7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bcf5e6fa681c74524cee926f6cf19a0e2dfdfee766236e765adcbbf2b5d44cf
|
3 |
+
size 143997
|
ppo-LunarLander-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v0/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5f04069060>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651694346.247132,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Mfbwp6Aq6g5QSOPH5rDLnXdK4XxkqtwAAgD8AAIA/AOkuvWe9bz4kths+xkXPvlHWsz3cnR89AAAAAAAAAAAaDAu9Hzb0uya3TDyhU3Q8Gj9avcumTT0AAIA/AACAP037WL2PXie6rsSUujtpGLYTuoE6T0mrOQAAgD8AAIA/TRb2Pa63mLqCtg28wUU7OYwBDbulvx86AAAAAAAAAABmXAs8KeA/unLBVDe+OHky9hdYuh2gdLYAAIA/AACAP81xQT1Ij6y6ykQOun6KnTRf5EA6zeIiOQAAgD8AAIA/ZjQfvFKI9Lv6iwI++eepvhPNUz1m0EO/AAAAAAAAgD/N0Gk81zNduRo/mTT3U+cuJXvZOmiRgLMAAIA/AACAP2a2frz2XBa6g5fBNqawbjLW9Kk72DPjtQAAgD8AAIA/Wr4HPmlYdz+25WY+eT0Gv0ozmz4NEzw+AAAAAAAAAAAm2Yy9rkGBuoLODbbiN8WwHOHutrapKDUAAIA/AACAP4DYNz1w+O8+UIQoPZwg2L6NqnE9WbG3vAAAAAAAAAAAs9hjve5bmj2DjFY9EXSuvrHGyrvNBhG9AAAAAAAAAAAz7Ow9mAd8PzrzQD4qRw6/y0VfPpaMVz0AAAAAAAAAAE10ZL3DeXC6KJLdNkrDMTLvhq+5MIsAtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsmMjEG8PcUCUhpRSlIwBbJRNTgGMAXSUR0Cr+kVZTyavdX2UKGgGaAloD0MIDDohdFBYcUCUhpRSlGgVS89oFkdAq/qIJiRW93V9lChoBmgJaA9DCDYBhuXPpXJAlIaUUpRoFUvfaBZHQKv6wy9EkSp1fZQoaAZoCWgPQwh/3enO0wdzQJSGlFKUaBVLzmgWR0Cr+vzC1qnFdX2UKGgGaAloD0MIvw0xXvMQbkCUhpRSlGgVTQEBaBZHQKv6+5tFa0R1fZQoaAZoCWgPQwjOjlTfeaBzQJSGlFKUaBVNDwFoFkdAq/sgVuaWonV9lChoBmgJaA9DCKorn+U5mnBAlIaUUpRoFU0QAWgWR0Cr+z/PomojdX2UKGgGaAloD0MIr8+c9emDcECUhpRSlGgVS9toFkdAq/tJ22XsxHV9lChoBmgJaA9DCAMLYMpAE3JAlIaUUpRoFUvXaBZHQKv7mH8jzI51fZQoaAZoCWgPQwgv205b499xQJSGlFKUaBVL5mgWR0Cr/Bw1R+BpdX2UKGgGaAloD0MIpMUZw5ykcUCUhpRSlGgVS+9oFkdAq/wmX1J173V9lChoBmgJaA9DCBMn9zuUKnFAlIaUUpRoFUvnaBZHQKv8OfI0ZWJ1fZQoaAZoCWgPQwj/JD53gu1yQJSGlFKUaBVL0mgWR0Cr/GQIUrTZdX2UKGgGaAloD0MI+oBAZxIcc0CUhpRSlGgVS7poFkdAq/xr8Jlar3V9lChoBmgJaA9DCGNkyRzLLHJAlIaUUpRoFUveaBZHQKv8nLxqfvp1fZQoaAZoCWgPQwhUjPM3IYZxQJSGlFKUaBVL4mgWR0Cr/NkTxoZidX2UKGgGaAloD0MIXI/C9ajlcECUhpRSlGgVS/FoFkdAq/zpX+2mYXV9lChoBmgJaA9DCIuLo3ITwXJAlIaUUpRoFUvOaBZHQKv9G8g6ltV1fZQoaAZoCWgPQwi4QILiR19yQJSGlFKUaBVL0GgWR0Cr/VOI68xsdX2UKGgGaAloD0MIoYSZtn/3cUCUhpRSlGgVS8JoFkdAq/1piNKh+XV9lChoBmgJaA9DCI85z9iXYHJAlIaUUpRoFU0BAWgWR0Cr/XrDqGDddX2UKGgGaAloD0MIzEQRUvdZc0CUhpRSlGgVS+toFkdAq/3CjJuEVXV9lChoBmgJaA9DCGjKTj9o93FAlIaUUpRoFUvfaBZHQKv9xqUu+RJ1fZQoaAZoCWgPQwjPhvwzwwdzQJSGlFKUaBVL2WgWR0Cr/gmZ/kNndX2UKGgGaAloD0MIf73CgvvncECUhpRSlGgVS8poFkdAq/5wjbBXS3V9lChoBmgJaA9DCOyFAraD03BAlIaUUpRoFUvDaBZHQKv+nXnyNGV1fZQoaAZoCWgPQwgNx/MZ0JluQJSGlFKUaBVL6WgWR0Cr/sqR2bG4dX2UKGgGaAloD0MImKQyxdzocUCUhpRSlGgVS/BoFkdAq/8AVEd/8XV9lChoBmgJaA9DCO888Zwtm25AlIaUUpRoFUvNaBZHQKv+/r+Haex1fZQoaAZoCWgPQwibrie6boNxQJSGlFKUaBVL4mgWR0Cr/wsBZIQOdX2UKGgGaAloD0MIZ/D3ixk/ckCUhpRSlGgVS+BoFkdAq/+ICMglnnV9lChoBmgJaA9DCDXR56OM9XBAlIaUUpRoFUvUaBZHQKv/nkPMB6t1fZQoaAZoCWgPQwhqNLkYA55yQJSGlFKUaBVL9mgWR0Cr/7xyOq//dX2UKGgGaAloD0MIixcLQ+S/cUCUhpRSlGgVS9loFkdAq//qAOJ+D3V9lChoBmgJaA9DCO+QYoDEt3FAlIaUUpRoFUviaBZHQKwAL8XN1Qt1fZQoaAZoCWgPQwhmSutvCQN0QJSGlFKUaBVL8WgWR0CsAEtlZowmdX2UKGgGaAloD0MINNdppOXNcECUhpRSlGgVS+BoFkdArAB57E5yVHV9lChoBmgJaA9DCBVSflJtznFAlIaUUpRoFUv9aBZHQKwA2XVsk6d1fZQoaAZoCWgPQwg2I4PcxeJxQJSGlFKUaBVL6GgWR0CsEzx5cC5mdX2UKGgGaAloD0MI54pSQvCrcUCUhpRSlGgVS9hoFkdArBNw/FBIF3V9lChoBmgJaA9DCAK7mjxlXUFAlIaUUpRoFUutaBZHQKwTf6F/QSl1fZQoaAZoCWgPQwgH0sWmVfRxQJSGlFKUaBVL42gWR0CsE78IAwPAdX2UKGgGaAloD0MI0hvuI7fhckCUhpRSlGgVS+5oFkdArBQKwD/2kHV9lChoBmgJaA9DCFDj3vxGKnBAlIaUUpRoFUvlaBZHQKwUI3kxREZ1fZQoaAZoCWgPQwhrLGFtTL9zQJSGlFKUaBVL82gWR0CsFExVp9JCdX2UKGgGaAloD0MIgufew6XvckCUhpRSlGgVS+1oFkdArBTlY0VJtnV9lChoBmgJaA9DCAwfEVMirHBAlIaUUpRoFUvNaBZHQKwVGVeKKpF1fZQoaAZoCWgPQwg2kZkLXJNwQJSGlFKUaBVL/WgWR0CsFUVzIV/MdX2UKGgGaAloD0MIIAn7dpKeckCUhpRSlGgVS/BoFkdArBVLZUT+N3V9lChoBmgJaA9DCD7nbteL23BAlIaUUpRoFUvnaBZHQKwV2Cgbp/x1fZQoaAZoCWgPQwjzr+WVa3dyQJSGlFKUaBVL0GgWR0CsFgGJWNm2dX2UKGgGaAloD0MI409UNqx1ckCUhpRSlGgVS8toFkdArBYxrBTGYXV9lChoBmgJaA9DCFABMJ5BjnBAlIaUUpRoFUvOaBZHQKwWVON5t3x1fZQoaAZoCWgPQwjmkqrt5o1yQJSGlFKUaBVL+2gWR0CsFp+NDMNddX2UKGgGaAloD0MIghspW+QCckCUhpRSlGgVTTsBaBZHQKwW6c2itaJ1fZQoaAZoCWgPQwhWKqioep9xQJSGlFKUaBVL6WgWR0CsFwmJ3xFzdX2UKGgGaAloD0MI4nX9gp1ScECUhpRSlGgVS+BoFkdArBde0JF9a3V9lChoBmgJaA9DCAZKCiyAdHFAlIaUUpRoFUvVaBZHQKwXZ95yEL91fZQoaAZoCWgPQwg6It+l1MlxQJSGlFKUaBVL7WgWR0CsF3LzXjEOdX2UKGgGaAloD0MI6gd1kUJscECUhpRSlGgVS8loFkdArBfbXYlIE3V9lChoBmgJaA9DCPmiPV5IXXJAlIaUUpRoFUvIaBZHQKwYBaC+UQl1fZQoaAZoCWgPQwiCdLFpZbRxQJSGlFKUaBVN2QFoFkdArBg6InBtUHV9lChoBmgJaA9DCLwH6L4cLXJAlIaUUpRoFUvZaBZHQKwYYpZwGW51fZQoaAZoCWgPQwhqaW6FsChwQJSGlFKUaBVL4mgWR0CsGIN78ejmdX2UKGgGaAloD0MI4Nv0Z/+8cUCUhpRSlGgVS8ZoFkdArBiea2F36nV9lChoBmgJaA9DCM/ZAkJrHG5AlIaUUpRoFUvNaBZHQKwY/sP8Q7N1fZQoaAZoCWgPQwgzNJ4IIr1wQJSGlFKUaBVL0GgWR0CsGWfPPcBVdX2UKGgGaAloD0MIDtqrj8fgcUCUhpRSlGgVS/JoFkdArBmdCZ4Oc3V9lChoBmgJaA9DCCklBKtq2WVAlIaUUpRoFU3oA2gWR0CsGftSAH3UdX2UKGgGaAloD0MIK76h8BkocUCUhpRSlGgVS8RoFkdArBoJKraM73V9lChoBmgJaA9DCKPmq+Qj+nBAlIaUUpRoFUvmaBZHQKwaGokRjBl1fZQoaAZoCWgPQwhTW+ogb+tzQJSGlFKUaBVL5mgWR0CsGmD3VTaTdX2UKGgGaAloD0MIwAXZsvzDcUCUhpRSlGgVS+poFkdArBp19nbqQnV9lChoBmgJaA9DCNHJUuv9wnBAlIaUUpRoFUvxaBZHQKwa96F/QSl1fZQoaAZoCWgPQwjNPo9RnkJwQJSGlFKUaBVL3mgWR0CsGxehf0EpdX2UKGgGaAloD0MIoBaDhyl5ckCUhpRSlGgVS9JoFkdArBsc1fmcOXV9lChoBmgJaA9DCLGnHf4a8WxAlIaUUpRoFU1GAWgWR0CsGzM4ku6FdX2UKGgGaAloD0MI0nMLXYnYb0CUhpRSlGgVS89oFkdArBs0zKs+3nV9lChoBmgJaA9DCBfvx+0XQW5AlIaUUpRoFUvfaBZHQKwbe05U96l1fZQoaAZoCWgPQwiNQ/0u7FtyQJSGlFKUaBVNFQFoFkdArBuQCdSVGHV9lChoBmgJaA9DCA3k2eXbjnBAlIaUUpRoFUvaaBZHQKwbwOLBKth1fZQoaAZoCWgPQwhwBn+/2BFyQJSGlFKUaBVLwGgWR0CsG/jgydnTdX2UKGgGaAloD0MIuvjbnmBhcECUhpRSlGgVS+1oFkdArBxS5Etuk3V9lChoBmgJaA9DCOj4aHGGmnNAlIaUUpRoFUvVaBZHQKwclZTQ3P11fZQoaAZoCWgPQwiZ1NAGIFlzQJSGlFKUaBVL2mgWR0CsHSbqhUR4dX2UKGgGaAloD0MIUYaqmEoPcUCUhpRSlGgVS+doFkdArB1AsK9f1HV9lChoBmgJaA9DCN+/eXFi929AlIaUUpRoFUv+aBZHQKwdQNuLrHF1fZQoaAZoCWgPQwi4IcZr3ixwQJSGlFKUaBVNFAFoFkdArB1sXBP9DXV9lChoBmgJaA9DCAAC1qrdW3FAlIaUUpRoFUvUaBZHQKwdwjs2NvR1fZQoaAZoCWgPQwg6P8VxoMlxQJSGlFKUaBVL42gWR0CsHdKuKXOXdX2UKGgGaAloD0MIJAwDlpzhckCUhpRSlGgVS+JoFkdArB4PgWJrL3V9lChoBmgJaA9DCNZSQNo/nnFAlIaUUpRoFUvQaBZHQKweO1NQCS11fZQoaAZoCWgPQwikb9I06ANwQJSGlFKUaBVL3WgWR0CsHk+XJHRUdX2UKGgGaAloD0MI6brwg7OccUCUhpRSlGgVS/5oFkdArB5oj4YaYXV9lChoBmgJaA9DCCy4H/CASnJAlIaUUpRoFU0PAWgWR0CsHoOIqLCOdX2UKGgGaAloD0MIEJVGzGzMcUCUhpRSlGgVS9loFkdArB7J5eJHiHV9lChoBmgJaA9DCNDtJY2RbXBAlIaUUpRoFUvQaBZHQKwfCkrwvxp1fZQoaAZoCWgPQwiYE7TJ4VRxQJSGlFKUaBVNCQFoFkdArB8mZ5Rj0HV9lChoBmgJaA9DCLTmx1+adnBAlIaUUpRoFUvnaBZHQKwgIWZ7Xxx1fZQoaAZoCWgPQwiJCtXNReVzQJSGlFKUaBVL5mgWR0CsIDTYdyT7dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 736,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.02,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c135f50c692414bec33081acd6eaab63faa4e89d63176ce5eaa8910e3f88ce14
|
3 |
+
size 84893
|
ppo-LunarLander-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62f8a5d72baa2b559ee1b0bf430765d5217355ec3a6b20bfe8cd9bdfde572fdb
|
3 |
+
size 43201
|
ppo-LunarLander-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf923a006690dffedd8be06bb5483058cf7fd6fa3b6e638997954431ec6e0398
|
3 |
+
size 216440
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.0131638986755, "std_reward": 14.203812796179507, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T20:29:29.006688"}
|