Eloghosa Ikponmwoba
second trained model upload
4ea2a99
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>",
"_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f5f04069060>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651692649.6991677,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZDsD320Fy6et0JOhMS0DQ/OB67NX0euQAAgD8AAAAAQJmCvexjmT9Gx5W9e2ShvtQR473lfHc9AAAAAAAAAADAF6g9L88HP/fmkrz5di++aFo2PJ59Tj0AAAAAAAAAACaRsr2uX426hicnOh6Y9Db6PDA75bZOuQAAgD8AAAAAzQ+XPIoOqD85dUk+rqPcvuOWurxKesi8AAAAAAAAAAAA5ey9xlTZPuiIfT65nIq+xPaGPacxuzwAAAAAAAAAADMzpLyPplS6M40DvLaSSTeYSqK5Rje4tgAAgD8AAIA/5tYnPU8Rdbwahly88GGEPbiumz10Cp08AACAPwAAgD+ABLy9SFWJuppCWDtCtVi2MIn+uh7PeroAAIA/AACAP8Betj3PJ3w/MajHPQAqq772Po89aeC/vQAAAAAAAAAAJq4YvtLB2ruGv4U4OVWlPK+ZRD0KeYq9AACAPwAAgD/mCeS9e9KyunrQEjya/VY2cVh7OsOJPTUAAIA/AAAAAJpNDz1ce1e64vRau9bHnzVXO4S6aJYVtQAAgD8AAIA/zd4uPPF4nD96kSY9Po21vk52YzuVODk8AAAAAAAAAAAAMRU99gxRulvyQ7yJiNy12gk7u8veRDUAAIA/AACAPzM5lL1cfwW6Wks5O7XT8zat5pw7kIhZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHbCryVN0ZECUhpRSlIwBbJRN6AOMAXSUR0CRyACOFQEZdX2UKGgGaAloD0MIIEWduQf5ZECUhpRSlGgVTegDaBZHQJHQOAoXsPd1fZQoaAZoCWgPQwhGelG732pmQJSGlFKUaBVN6ANoFkdAkdCYku6ErXV9lChoBmgJaA9DCC6u8ZnsD2VAlIaUUpRoFU3oA2gWR0CR0O3hGYrsdX2UKGgGaAloD0MIqdxELc23Y0CUhpRSlGgVTegDaBZHQJHVtlPJq7B1fZQoaAZoCWgPQwgB+n3/ZvFmQJSGlFKUaBVN6ANoFkdAkdbJxm03O3V9lChoBmgJaA9DCBtIF5tWI2FAlIaUUpRoFU3oA2gWR0CR2JD15B1LdX2UKGgGaAloD0MItOOG302WZECUhpRSlGgVTegDaBZHQJHtP4i5d4V1fZQoaAZoCWgPQwgb2gBsQDVkQJSGlFKUaBVN6ANoFkdAkfGHxOLzgHV9lChoBmgJaA9DCN7n+GhxymBAlIaUUpRoFU3oA2gWR0CR8zd8zAN5dX2UKGgGaAloD0MIQ1ciUP2IY0CUhpRSlGgVTegDaBZHQJH8RM0xdpt1fZQoaAZoCWgPQwijBP2FHuk9QJSGlFKUaBVL9WgWR0CSAZK9f1HwdX2UKGgGaAloD0MIccgG0sXyM0CUhpRSlGgVS+FoFkdAkgHpXuE253V9lChoBmgJaA9DCFn5ZTBGdmNAlIaUUpRoFU3oA2gWR0CSB3WiUPhAdX2UKGgGaAloD0MI2qoksg+OZUCUhpRSlGgVTegDaBZHQJIKMTj/+851fZQoaAZoCWgPQwgY6xuYXD5kQJSGlFKUaBVN6ANoFkdAkgvw44p+dHV9lChoBmgJaA9DCO7O2m2Xi2JAlIaUUpRoFU3oA2gWR0CSDKN3GGVSdX2UKGgGaAloD0MIegCL/PppNECUhpRSlGgVS+VoFkdAkhA5v99+gHV9lChoBmgJaA9DCFu21hcJDGJAlIaUUpRoFU3oA2gWR0CSEpx+rlvIdX2UKGgGaAloD0MIi6VIvhKYZUCUhpRSlGgVTegDaBZHQJIUeCPIXCV1fZQoaAZoCWgPQwiBsilXePhcQJSGlFKUaBVN6ANoFkdAkhwMU7CBPXV9lChoBmgJaA9DCBKFlnX/+GBAlIaUUpRoFU3oA2gWR0CSHGXY150KdX2UKGgGaAloD0MI3uNMEzZVYkCUhpRSlGgVTegDaBZHQJIctUJfICF1fZQoaAZoCWgPQwgDXmbYKDc8QJSGlFKUaBVL8GgWR0CSHj2FFlTWdX2UKGgGaAloD0MIA7StZh1SYkCUhpRSlGgVTegDaBZHQJIg8S6DoQp1fZQoaAZoCWgPQwivljszwQ5iQJSGlFKUaBVN6ANoFkdAkiHhGDtgKHV9lChoBmgJaA9DCM5THXIzd2JAlIaUUpRoFU3oA2gWR0CSI3fdyksSdX2UKGgGaAloD0MI3o5wWvDKYECUhpRSlGgVTegDaBZHQJI3VuJk5IZ1fZQoaAZoCWgPQwg8bCIzF79eQJSGlFKUaBVN6ANoFkdAkkbE/8l5W3V9lChoBmgJaA9DCO3Vx0PfGF9AlIaUUpRoFU3oA2gWR0CSTGTnq3VkdX2UKGgGaAloD0MIy2lPyTk/YkCUhpRSlGgVTegDaBZHQJJSIDfWMCN1fZQoaAZoCWgPQwh2jCsujtxiQJSGlFKUaBVN6ANoFkdAklTG8mKIi3V9lChoBmgJaA9DCPqzHykiA11AlIaUUpRoFU3oA2gWR0CSVoBdD6WPdX2UKGgGaAloD0MI/DcvTvx0ZkCUhpRSlGgVTegDaBZHQJJXLko4MnZ1fZQoaAZoCWgPQwicwkoFla1gQJSGlFKUaBVN6ANoFkdAkl0ctXgccXV9lChoBmgJaA9DCIiE7/0N6F1AlIaUUpRoFU3oA2gWR0CSXv8fFJg9dX2UKGgGaAloD0MIdJgvL8BeCMCUhpRSlGgVS7JoFkdAkmDeXVsk6nV9lChoBmgJaA9DCMk4RrJHFV5AlIaUUpRoFU3oA2gWR0CSZuIjW07bdX2UKGgGaAloD0MIYroQq7/pYECUhpRSlGgVTegDaBZHQJJnQaLn9vV1fZQoaAZoCWgPQwhb7zfacapiQJSGlFKUaBVN6ANoFkdAkmeNGI9C/3V9lChoBmgJaA9DCMMrSZ5rjmRAlIaUUpRoFU3oA2gWR0CSaUXvphWpdX2UKGgGaAloD0MIfNY1Wg5QYECUhpRSlGgVTegDaBZHQJJsAw7DEWJ1fZQoaAZoCWgPQwh/FHXmHvBlQJSGlFKUaBVN6ANoFkdAkm0EZm7J4nV9lChoBmgJaA9DCP5D+u1r7GFAlIaUUpRoFU3oA2gWR0CSbqTxoZhsdX2UKGgGaAloD0MIrn5skh91MUCUhpRSlGgVS8ZoFkdAkoGU/KQq7XV9lChoBmgJaA9DCIyDS8ccomFAlIaUUpRoFU3oA2gWR0CSgnI065oXdX2UKGgGaAloD0MIxQH0+/6N/b+UhpRSlGgVS/5oFkdAkoh5aiblR3V9lChoBmgJaA9DCGSw4lRrE2FAlIaUUpRoFU3oA2gWR0CSj/z+WGATdX2UKGgGaAloD0MIRNsxddfvZECUhpRSlGgVTegDaBZHQJKVXbnHNot1fZQoaAZoCWgPQwgexqS/l3oqQJSGlFKUaBVL6WgWR0CSl1C4z7/GdX2UKGgGaAloD0MIW7VrQlrFY0CUhpRSlGgVTegDaBZHQJKbTCqIacZ1fZQoaAZoCWgPQwjbNLbXgmZjQJSGlFKUaBVN6ANoFkdAkp4Pw3HaOHV9lChoBmgJaA9DCMdGIF7XbmNAlIaUUpRoFU3oA2gWR0CSoIlPrOZ9dX2UKGgGaAloD0MIQBcNGQ88YUCUhpRSlGgVTegDaBZHQJKml8ohIOJ1fZQoaAZoCWgPQwiBe54/7cVjQJSGlFKUaBVN6ANoFkdAkqh18CxNZnV9lChoBmgJaA9DCPZCAdtBjmFAlIaUUpRoFU3oA2gWR0CSqmdAxBVudX2UKGgGaAloD0MIKUAUzJiWPkCUhpRSlGgVTQMBaBZHQJKwPFyaNMp1fZQoaAZoCWgPQwj2KFyPwoRdQJSGlFKUaBVN6ANoFkdAkrCAuAZsK3V9lChoBmgJaA9DCBx5ILLIdGNAlIaUUpRoFU3oA2gWR0CSsOB19v0idX2UKGgGaAloD0MID9HoDuKVYECUhpRSlGgVTegDaBZHQJKxLhZQpF11fZQoaAZoCWgPQwjG/UemQ8NAQJSGlFKUaBVL62gWR0CStJtcfNiZdX2UKGgGaAloD0MI6X+5Fq2lZUCUhpRSlGgVTegDaBZHQJK1faufVZt1fZQoaAZoCWgPQwhH41C/i5xlQJSGlFKUaBVN6ANoFkdAkrgo6nzg/HV9lChoBmgJaA9DCLix2ZFq52JAlIaUUpRoFU3oA2gWR0CSvdI4lyBDdX2UKGgGaAloD0MIcAhVavZAYUCUhpRSlGgVTegDaBZHQJLMrER8MNN1fZQoaAZoCWgPQwg0vcRYJs5jQJSGlFKUaBVN6ANoFkdAkt3NETg2qHV9lChoBmgJaA9DCPymsFLBRmJAlIaUUpRoFU3oA2gWR0CS5EUCaJAMdX2UKGgGaAloD0MIqMe2DDiCZUCUhpRSlGgVTegDaBZHQJLmaEmICU51fZQoaAZoCWgPQwhw7URJSEhiQJSGlFKUaBVN6ANoFkdAkuq9iH6/I3V9lChoBmgJaA9DCIyjchO1+mNAlIaUUpRoFU3oA2gWR0CS7dizsyBTdX2UKGgGaAloD0MIZwqd11gIYkCUhpRSlGgVTegDaBZHQJL606q814x1fZQoaAZoCWgPQwhvERjrm75iQJSGlFKUaBVN6ANoFkdAkv0ct9QXRHV9lChoBmgJaA9DCKc7TzxnJFpAlIaUUpRoFU3oA2gWR0CTA6MK1G9YdX2UKGgGaAloD0MIxeV4BSK1ZUCUhpRSlGgVTegDaBZHQJMD8nVoYel1fZQoaAZoCWgPQwj9gt2wbYpfQJSGlFKUaBVN6ANoFkdAkwRSLVFx43V9lChoBmgJaA9DCNl6hnBMw2JAlIaUUpRoFU3oA2gWR0CTBJ/vv0AcdX2UKGgGaAloD0MIqRH6mXoeY0CUhpRSlGgVTegDaBZHQJMIHVoYekp1fZQoaAZoCWgPQwitw9FVOpBjQJSGlFKUaBVN6ANoFkdAkwjpCF9KEnV9lChoBmgJaA9DCPSMfcnGs1BAlIaUUpRoFUveaBZHQJMKxHDrJKd1fZQoaAZoCWgPQwjb4ET0axtcQJSGlFKUaBVN6ANoFkdAkwt/kq+ajXV9lChoBmgJaA9DCBU7God6GmFAlIaUUpRoFU3oA2gWR0CTEMjMFEApdX2UKGgGaAloD0MIz6RN1T0SQ0CUhpRSlGgVS+xoFkdAkxEB77bcoHV9lChoBmgJaA9DCAisHFrkQWJAlIaUUpRoFU3oA2gWR0CTEZhYvFm4dX2UKGgGaAloD0MIec4WEFqhT0CUhpRSlGgVS8ZoFkdAkyEUXDWK/HV9lChoBmgJaA9DCFaCxeHM3WFAlIaUUpRoFU3oA2gWR0CTLK/Ho5ggdX2UKGgGaAloD0MImkF8YEd/YkCUhpRSlGgVTegDaBZHQJMyKWPcSGt1fZQoaAZoCWgPQwiAuRYtwEJgQJSGlFKUaBVN6ANoFkdAkzQQTAWSEHV9lChoBmgJaA9DCEG7Q4qBeWNAlIaUUpRoFU3oA2gWR0CTOAU83dbgdX2UKGgGaAloD0MIG9gqweLWXkCUhpRSlGgVTegDaBZHQJM63+fh/Al1fZQoaAZoCWgPQwjFVtC0RA1hQJSGlFKUaBVN6ANoFkdAk0Y9FKCg9XV9lChoBmgJaA9DCMIv9fOmGWZAlIaUUpRoFU3oA2gWR0CTT0i9IwuedX2UKGgGaAloD0MI9pfdk4dIXUCUhpRSlGgVTegDaBZHQJNPktyxRl91fZQoaAZoCWgPQwhdixagbVZkQJSGlFKUaBVN6ANoFkdAk1BTGcWj5HV9lChoBmgJaA9DCPFkNzN6R2BAlIaUUpRoFU3oA2gWR0CTVJdpqREGdX2UKGgGaAloD0MIPQ/uzlqDYUCUhpRSlGgVTegDaBZHQJNX7oX9BKN1fZQoaAZoCWgPQwgQ5+EEpihkQJSGlFKUaBVN6ANoFkdAk1jkWykbgnV9lChoBmgJaA9DCMnLmljgxWNAlIaUUpRoFU3oA2gWR0CTXywc5sCUdX2UKGgGaAloD0MIY5eo3prbYECUhpRSlGgVTegDaBZHQJNfbMmnfl91fZQoaAZoCWgPQwg+k/3ztA1jQJSGlFKUaBVN6ANoFkdAk2ATuF6Av3V9lChoBmgJaA9DCNV3flECyGFAlIaUUpRoFU3oA2gWR0CTYhr+o99udWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 372,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 128,
"n_epochs": 6,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}