Image-Text-to-Text
PEFT
Safetensors
English
File size: 3,829 Bytes
0bd0594
 
 
 
5231487
0bd0594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5231487
0bd0594
 
 
 
 
 
 
 
 
 
 
5231487
0bd0594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5231487
0bd0594
5231487
 
 
 
 
 
 
 
 
0bd0594
 
 
 
 
 
 
5231487
 
 
 
 
 
 
0bd0594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "50ddeec2e802423ebf210b0264d2f222",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/4 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/anaconda3/lib/python3.12/site-packages/bitsandbytes/cextension.py:34: UserWarning: The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable.\n",
      "  warn(\"The installed version of bitsandbytes was compiled without GPU support. \"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "'NoneType' object has no attribute 'cadam32bit_grad_fp32'\n"
     ]
    }
   ],
   "source": [
    "\n",
    "from transformers import AutoProcessor, Idefics3ForConditionalGeneration, image_utils\n",
    "import torch\n",
    "device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
    "model_id=\"eltorio/IDEFICS3_ROCO\"\n",
    "# model = AutoModelForImageTextToText.from_pretrained(model_id).to(device)\n",
    "base_model_path=\"HuggingFaceM4/Idefics3-8B-Llama3\" #or change to local path\n",
    "processor = AutoProcessor.from_pretrained(base_model_path)\n",
    "model = Idefics3ForConditionalGeneration.from_pretrained(\n",
    "        base_model_path, torch_dtype=torch.bfloat16\n",
    "    ).to(device)\n",
    "\n",
    "model.load_adapter(model_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import image_utils\n",
    "image = image_utils.load_image('https://github.com/sctg-development/ROCOv2-radiology/blob/main/source_dataset/test/ROCOv2_2023_test_000005.jpg?raw=true')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [\n",
    "    {\n",
    "        \"role\": \"user\",\n",
    "        \"content\": [\n",
    "            {\"type\": \"image\"},\n",
    "            {\"type\": \"text\", \"text\": \"What do we see in this image?\"},\n",
    "        ]\n",
    "    },\n",
    "]\n",
    "prompt = processor.apply_chat_template(messages, add_generation_prompt=True)\n",
    "inputs = processor(text=prompt, images=[image], return_tensors=\"pt\")\n",
    "inputs = {k: v.to(device) for k, v in inputs.items()}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['User:<image>What do we see in this image?\\nAssistant:  Buccal and palatal cortical bone thickness measurements.\\n']\n"
     ]
    }
   ],
   "source": [
    "# Generate\n",
    "generated_ids = model.generate(**inputs, max_new_tokens=500)\n",
    "generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)\n",
    "\n",
    "print(generated_texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}