me@hg.co
commited on
Commit
•
b4e205e
1
Parent(s):
44fc622
wip
Browse files- ROCO-idefics3.ipynb +365 -66
ROCO-idefics3.ipynb
CHANGED
@@ -22,7 +22,7 @@
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
-
"execution_count":
|
26 |
"metadata": {
|
27 |
"executionInfo": {
|
28 |
"elapsed": 2,
|
@@ -36,7 +36,23 @@
|
|
36 |
},
|
37 |
"id": "F-zJG-uPIy3d"
|
38 |
},
|
39 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"source": [
|
41 |
"try:\n",
|
42 |
" import google.colab\n",
|
@@ -56,7 +72,7 @@
|
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
-
"execution_count":
|
60 |
"metadata": {
|
61 |
"executionInfo": {
|
62 |
"elapsed": 1459,
|
@@ -103,27 +119,21 @@
|
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
-
"execution_count":
|
107 |
"metadata": {},
|
108 |
"outputs": [
|
109 |
{
|
110 |
-
"name": "
|
111 |
"output_type": "stream",
|
112 |
"text": [
|
113 |
-
"
|
114 |
]
|
115 |
},
|
116 |
{
|
117 |
-
"name": "
|
118 |
"output_type": "stream",
|
119 |
"text": [
|
120 |
-
"
|
121 |
-
"You might have to re-authenticate when pushing to the Hugging Face Hub.\n",
|
122 |
-
"Run the following command in your terminal in case you want to set the 'store' credential helper as default.\n",
|
123 |
-
"\n",
|
124 |
-
"git config --global credential.helper store\n",
|
125 |
-
"\n",
|
126 |
-
"Read https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more details.\u001b[0m\n"
|
127 |
]
|
128 |
}
|
129 |
],
|
@@ -228,7 +238,7 @@
|
|
228 |
},
|
229 |
{
|
230 |
"cell_type": "code",
|
231 |
-
"execution_count":
|
232 |
"metadata": {
|
233 |
"colab": {
|
234 |
"base_uri": "https://localhost:8080/",
|
@@ -649,7 +659,245 @@
|
|
649 |
{
|
650 |
"data": {
|
651 |
"application/vnd.jupyter.widget-view+json": {
|
652 |
-
"model_id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
"version_major": 2,
|
654 |
"version_minor": 0
|
655 |
},
|
@@ -663,7 +911,7 @@
|
|
663 |
{
|
664 |
"data": {
|
665 |
"application/vnd.jupyter.widget-view+json": {
|
666 |
-
"model_id": "
|
667 |
"version_major": 2,
|
668 |
"version_minor": 0
|
669 |
},
|
@@ -677,7 +925,7 @@
|
|
677 |
{
|
678 |
"data": {
|
679 |
"application/vnd.jupyter.widget-view+json": {
|
680 |
-
"model_id": "
|
681 |
"version_major": 2,
|
682 |
"version_minor": 0
|
683 |
},
|
@@ -691,7 +939,7 @@
|
|
691 |
{
|
692 |
"data": {
|
693 |
"application/vnd.jupyter.widget-view+json": {
|
694 |
-
"model_id": "
|
695 |
"version_major": 2,
|
696 |
"version_minor": 0
|
697 |
},
|
@@ -705,7 +953,7 @@
|
|
705 |
{
|
706 |
"data": {
|
707 |
"application/vnd.jupyter.widget-view+json": {
|
708 |
-
"model_id": "
|
709 |
"version_major": 2,
|
710 |
"version_minor": 0
|
711 |
},
|
@@ -719,7 +967,7 @@
|
|
719 |
{
|
720 |
"data": {
|
721 |
"application/vnd.jupyter.widget-view+json": {
|
722 |
-
"model_id": "
|
723 |
"version_major": 2,
|
724 |
"version_minor": 0
|
725 |
},
|
@@ -733,7 +981,7 @@
|
|
733 |
{
|
734 |
"data": {
|
735 |
"application/vnd.jupyter.widget-view+json": {
|
736 |
-
"model_id": "
|
737 |
"version_major": 2,
|
738 |
"version_minor": 0
|
739 |
},
|
@@ -747,7 +995,7 @@
|
|
747 |
{
|
748 |
"data": {
|
749 |
"application/vnd.jupyter.widget-view+json": {
|
750 |
-
"model_id": "
|
751 |
"version_major": 2,
|
752 |
"version_minor": 0
|
753 |
},
|
@@ -761,7 +1009,7 @@
|
|
761 |
{
|
762 |
"data": {
|
763 |
"application/vnd.jupyter.widget-view+json": {
|
764 |
-
"model_id": "
|
765 |
"version_major": 2,
|
766 |
"version_minor": 0
|
767 |
},
|
@@ -775,7 +1023,7 @@
|
|
775 |
{
|
776 |
"data": {
|
777 |
"application/vnd.jupyter.widget-view+json": {
|
778 |
-
"model_id": "
|
779 |
"version_major": 2,
|
780 |
"version_minor": 0
|
781 |
},
|
@@ -789,7 +1037,7 @@
|
|
789 |
{
|
790 |
"data": {
|
791 |
"application/vnd.jupyter.widget-view+json": {
|
792 |
-
"model_id": "
|
793 |
"version_major": 2,
|
794 |
"version_minor": 0
|
795 |
},
|
@@ -803,7 +1051,7 @@
|
|
803 |
{
|
804 |
"data": {
|
805 |
"application/vnd.jupyter.widget-view+json": {
|
806 |
-
"model_id": "
|
807 |
"version_major": 2,
|
808 |
"version_minor": 0
|
809 |
},
|
@@ -817,7 +1065,7 @@
|
|
817 |
{
|
818 |
"data": {
|
819 |
"application/vnd.jupyter.widget-view+json": {
|
820 |
-
"model_id": "
|
821 |
"version_major": 2,
|
822 |
"version_minor": 0
|
823 |
},
|
@@ -831,7 +1079,7 @@
|
|
831 |
{
|
832 |
"data": {
|
833 |
"application/vnd.jupyter.widget-view+json": {
|
834 |
-
"model_id": "
|
835 |
"version_major": 2,
|
836 |
"version_minor": 0
|
837 |
},
|
@@ -845,7 +1093,7 @@
|
|
845 |
{
|
846 |
"data": {
|
847 |
"application/vnd.jupyter.widget-view+json": {
|
848 |
-
"model_id": "
|
849 |
"version_major": 2,
|
850 |
"version_minor": 0
|
851 |
},
|
@@ -859,7 +1107,7 @@
|
|
859 |
{
|
860 |
"data": {
|
861 |
"application/vnd.jupyter.widget-view+json": {
|
862 |
-
"model_id": "
|
863 |
"version_major": 2,
|
864 |
"version_minor": 0
|
865 |
},
|
@@ -873,7 +1121,7 @@
|
|
873 |
{
|
874 |
"data": {
|
875 |
"application/vnd.jupyter.widget-view+json": {
|
876 |
-
"model_id": "
|
877 |
"version_major": 2,
|
878 |
"version_minor": 0
|
879 |
},
|
@@ -887,7 +1135,7 @@
|
|
887 |
{
|
888 |
"data": {
|
889 |
"application/vnd.jupyter.widget-view+json": {
|
890 |
-
"model_id": "
|
891 |
"version_major": 2,
|
892 |
"version_minor": 0
|
893 |
},
|
@@ -901,7 +1149,7 @@
|
|
901 |
{
|
902 |
"data": {
|
903 |
"application/vnd.jupyter.widget-view+json": {
|
904 |
-
"model_id": "
|
905 |
"version_major": 2,
|
906 |
"version_minor": 0
|
907 |
},
|
@@ -915,7 +1163,7 @@
|
|
915 |
{
|
916 |
"data": {
|
917 |
"application/vnd.jupyter.widget-view+json": {
|
918 |
-
"model_id": "
|
919 |
"version_major": 2,
|
920 |
"version_minor": 0
|
921 |
},
|
@@ -929,7 +1177,7 @@
|
|
929 |
{
|
930 |
"data": {
|
931 |
"application/vnd.jupyter.widget-view+json": {
|
932 |
-
"model_id": "
|
933 |
"version_major": 2,
|
934 |
"version_minor": 0
|
935 |
},
|
@@ -943,7 +1191,7 @@
|
|
943 |
{
|
944 |
"data": {
|
945 |
"application/vnd.jupyter.widget-view+json": {
|
946 |
-
"model_id": "
|
947 |
"version_major": 2,
|
948 |
"version_minor": 0
|
949 |
},
|
@@ -957,7 +1205,7 @@
|
|
957 |
{
|
958 |
"data": {
|
959 |
"application/vnd.jupyter.widget-view+json": {
|
960 |
-
"model_id": "
|
961 |
"version_major": 2,
|
962 |
"version_minor": 0
|
963 |
},
|
@@ -971,7 +1219,7 @@
|
|
971 |
{
|
972 |
"data": {
|
973 |
"application/vnd.jupyter.widget-view+json": {
|
974 |
-
"model_id": "
|
975 |
"version_major": 2,
|
976 |
"version_minor": 0
|
977 |
},
|
@@ -985,7 +1233,7 @@
|
|
985 |
{
|
986 |
"data": {
|
987 |
"application/vnd.jupyter.widget-view+json": {
|
988 |
-
"model_id": "
|
989 |
"version_major": 2,
|
990 |
"version_minor": 0
|
991 |
},
|
@@ -999,7 +1247,7 @@
|
|
999 |
{
|
1000 |
"data": {
|
1001 |
"application/vnd.jupyter.widget-view+json": {
|
1002 |
-
"model_id": "
|
1003 |
"version_major": 2,
|
1004 |
"version_minor": 0
|
1005 |
},
|
@@ -1013,7 +1261,7 @@
|
|
1013 |
{
|
1014 |
"data": {
|
1015 |
"application/vnd.jupyter.widget-view+json": {
|
1016 |
-
"model_id": "
|
1017 |
"version_major": 2,
|
1018 |
"version_minor": 0
|
1019 |
},
|
@@ -1027,7 +1275,7 @@
|
|
1027 |
{
|
1028 |
"data": {
|
1029 |
"application/vnd.jupyter.widget-view+json": {
|
1030 |
-
"model_id": "
|
1031 |
"version_major": 2,
|
1032 |
"version_minor": 0
|
1033 |
},
|
@@ -1041,7 +1289,7 @@
|
|
1041 |
{
|
1042 |
"data": {
|
1043 |
"application/vnd.jupyter.widget-view+json": {
|
1044 |
-
"model_id": "
|
1045 |
"version_major": 2,
|
1046 |
"version_minor": 0
|
1047 |
},
|
@@ -1055,7 +1303,7 @@
|
|
1055 |
{
|
1056 |
"data": {
|
1057 |
"application/vnd.jupyter.widget-view+json": {
|
1058 |
-
"model_id": "
|
1059 |
"version_major": 2,
|
1060 |
"version_minor": 0
|
1061 |
},
|
@@ -1086,7 +1334,7 @@
|
|
1086 |
},
|
1087 |
{
|
1088 |
"cell_type": "code",
|
1089 |
-
"execution_count":
|
1090 |
"metadata": {
|
1091 |
"colab": {
|
1092 |
"base_uri": "https://localhost:8080/"
|
@@ -1114,7 +1362,7 @@
|
|
1114 |
" 'cui': ['C0037005']}"
|
1115 |
]
|
1116 |
},
|
1117 |
-
"execution_count":
|
1118 |
"metadata": {},
|
1119 |
"output_type": "execute_result"
|
1120 |
}
|
@@ -1125,7 +1373,7 @@
|
|
1125 |
},
|
1126 |
{
|
1127 |
"cell_type": "code",
|
1128 |
-
"execution_count":
|
1129 |
"metadata": {
|
1130 |
"colab": {
|
1131 |
"base_uri": "https://localhost:8080/",
|
@@ -1154,7 +1402,7 @@
|
|
1154 |
"<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1684x2294>"
|
1155 |
]
|
1156 |
},
|
1157 |
-
"execution_count":
|
1158 |
"metadata": {},
|
1159 |
"output_type": "execute_result"
|
1160 |
}
|
@@ -1174,7 +1422,7 @@
|
|
1174 |
},
|
1175 |
{
|
1176 |
"cell_type": "code",
|
1177 |
-
"execution_count":
|
1178 |
"metadata": {
|
1179 |
"colab": {
|
1180 |
"base_uri": "https://localhost:8080/",
|
@@ -1217,7 +1465,7 @@
|
|
1217 |
{
|
1218 |
"data": {
|
1219 |
"application/vnd.jupyter.widget-view+json": {
|
1220 |
-
"model_id": "
|
1221 |
"version_major": 2,
|
1222 |
"version_minor": 0
|
1223 |
},
|
@@ -1231,7 +1479,7 @@
|
|
1231 |
{
|
1232 |
"data": {
|
1233 |
"application/vnd.jupyter.widget-view+json": {
|
1234 |
-
"model_id": "
|
1235 |
"version_major": 2,
|
1236 |
"version_minor": 0
|
1237 |
},
|
@@ -1245,7 +1493,7 @@
|
|
1245 |
{
|
1246 |
"data": {
|
1247 |
"application/vnd.jupyter.widget-view+json": {
|
1248 |
-
"model_id": "
|
1249 |
"version_major": 2,
|
1250 |
"version_minor": 0
|
1251 |
},
|
@@ -1259,7 +1507,7 @@
|
|
1259 |
{
|
1260 |
"data": {
|
1261 |
"application/vnd.jupyter.widget-view+json": {
|
1262 |
-
"model_id": "
|
1263 |
"version_major": 2,
|
1264 |
"version_minor": 0
|
1265 |
},
|
@@ -1273,7 +1521,7 @@
|
|
1273 |
{
|
1274 |
"data": {
|
1275 |
"application/vnd.jupyter.widget-view+json": {
|
1276 |
-
"model_id": "
|
1277 |
"version_major": 2,
|
1278 |
"version_minor": 0
|
1279 |
},
|
@@ -1287,7 +1535,7 @@
|
|
1287 |
{
|
1288 |
"data": {
|
1289 |
"application/vnd.jupyter.widget-view+json": {
|
1290 |
-
"model_id": "
|
1291 |
"version_major": 2,
|
1292 |
"version_minor": 0
|
1293 |
},
|
@@ -1301,7 +1549,7 @@
|
|
1301 |
{
|
1302 |
"data": {
|
1303 |
"application/vnd.jupyter.widget-view+json": {
|
1304 |
-
"model_id": "
|
1305 |
"version_major": 2,
|
1306 |
"version_minor": 0
|
1307 |
},
|
@@ -1322,7 +1570,7 @@
|
|
1322 |
{
|
1323 |
"data": {
|
1324 |
"application/vnd.jupyter.widget-view+json": {
|
1325 |
-
"model_id": "
|
1326 |
"version_major": 2,
|
1327 |
"version_minor": 0
|
1328 |
},
|
@@ -1336,7 +1584,7 @@
|
|
1336 |
{
|
1337 |
"data": {
|
1338 |
"application/vnd.jupyter.widget-view+json": {
|
1339 |
-
"model_id": "
|
1340 |
"version_major": 2,
|
1341 |
"version_minor": 0
|
1342 |
},
|
@@ -1350,7 +1598,7 @@
|
|
1350 |
{
|
1351 |
"data": {
|
1352 |
"application/vnd.jupyter.widget-view+json": {
|
1353 |
-
"model_id": "
|
1354 |
"version_major": 2,
|
1355 |
"version_minor": 0
|
1356 |
},
|
@@ -1364,7 +1612,7 @@
|
|
1364 |
{
|
1365 |
"data": {
|
1366 |
"application/vnd.jupyter.widget-view+json": {
|
1367 |
-
"model_id": "
|
1368 |
"version_major": 2,
|
1369 |
"version_minor": 0
|
1370 |
},
|
@@ -1378,7 +1626,7 @@
|
|
1378 |
{
|
1379 |
"data": {
|
1380 |
"application/vnd.jupyter.widget-view+json": {
|
1381 |
-
"model_id": "
|
1382 |
"version_major": 2,
|
1383 |
"version_minor": 0
|
1384 |
},
|
@@ -1392,7 +1640,7 @@
|
|
1392 |
{
|
1393 |
"data": {
|
1394 |
"application/vnd.jupyter.widget-view+json": {
|
1395 |
-
"model_id": "
|
1396 |
"version_major": 2,
|
1397 |
"version_minor": 0
|
1398 |
},
|
@@ -1406,7 +1654,7 @@
|
|
1406 |
{
|
1407 |
"data": {
|
1408 |
"application/vnd.jupyter.widget-view+json": {
|
1409 |
-
"model_id": "
|
1410 |
"version_major": 2,
|
1411 |
"version_minor": 0
|
1412 |
},
|
@@ -1420,7 +1668,7 @@
|
|
1420 |
{
|
1421 |
"data": {
|
1422 |
"application/vnd.jupyter.widget-view+json": {
|
1423 |
-
"model_id": "
|
1424 |
"version_major": 2,
|
1425 |
"version_minor": 0
|
1426 |
},
|
@@ -1715,6 +1963,57 @@
|
|
1715 |
"source": [
|
1716 |
"trainer.train()"
|
1717 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1718 |
}
|
1719 |
],
|
1720 |
"metadata": {
|
@@ -14400,5 +14699,5 @@
|
|
14400 |
}
|
14401 |
},
|
14402 |
"nbformat": 4,
|
14403 |
-
"nbformat_minor":
|
14404 |
}
|
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": 1,
|
26 |
"metadata": {
|
27 |
"executionInfo": {
|
28 |
"elapsed": 2,
|
|
|
36 |
},
|
37 |
"id": "F-zJG-uPIy3d"
|
38 |
},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"ename": "Exception",
|
42 |
+
"evalue": "You are not running this code in Google Colab. Please use Google Colab if you would like to save the model to Google Drive",
|
43 |
+
"output_type": "error",
|
44 |
+
"traceback": [
|
45 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
46 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
47 |
+
"Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mgoogle\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcolab\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgoogle\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcolab\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m drive\n",
|
48 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'google'",
|
49 |
+
"\nDuring handling of the above exception, another exception occurred:\n",
|
50 |
+
"\u001b[0;31mException\u001b[0m Traceback (most recent call last)",
|
51 |
+
"Cell \u001b[0;32mIn[1], line 7\u001b[0m\n\u001b[1;32m 4\u001b[0m drive\u001b[38;5;241m.\u001b[39mmount(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/content/drive\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mModuleNotFoundError\u001b[39;00m:\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou are not running this code in Google Colab. Please use Google Colab if you would like to save the model to Google Drive\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
52 |
+
"\u001b[0;31mException\u001b[0m: You are not running this code in Google Colab. Please use Google Colab if you would like to save the model to Google Drive"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
],
|
56 |
"source": [
|
57 |
"try:\n",
|
58 |
" import google.colab\n",
|
|
|
72 |
},
|
73 |
{
|
74 |
"cell_type": "code",
|
75 |
+
"execution_count": 2,
|
76 |
"metadata": {
|
77 |
"executionInfo": {
|
78 |
"elapsed": 1459,
|
|
|
119 |
},
|
120 |
{
|
121 |
"cell_type": "code",
|
122 |
+
"execution_count": 3,
|
123 |
"metadata": {},
|
124 |
"outputs": [
|
125 |
{
|
126 |
+
"name": "stdout",
|
127 |
"output_type": "stream",
|
128 |
"text": [
|
129 |
+
"Hugging Face token found in environment variable\n"
|
130 |
]
|
131 |
},
|
132 |
{
|
133 |
+
"name": "stderr",
|
134 |
"output_type": "stream",
|
135 |
"text": [
|
136 |
+
"Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
]
|
138 |
}
|
139 |
],
|
|
|
238 |
},
|
239 |
{
|
240 |
"cell_type": "code",
|
241 |
+
"execution_count": 4,
|
242 |
"metadata": {
|
243 |
"colab": {
|
244 |
"base_uri": "https://localhost:8080/",
|
|
|
659 |
{
|
660 |
"data": {
|
661 |
"application/vnd.jupyter.widget-view+json": {
|
662 |
+
"model_id": "c681920ed6e24c35981eda639b1c4458",
|
663 |
+
"version_major": 2,
|
664 |
+
"version_minor": 0
|
665 |
+
},
|
666 |
+
"text/plain": [
|
667 |
+
"README.md: 0%| | 0.00/4.50k [00:00<?, ?B/s]"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
"metadata": {},
|
671 |
+
"output_type": "display_data"
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"data": {
|
675 |
+
"application/vnd.jupyter.widget-view+json": {
|
676 |
+
"model_id": "c5c781c8755e4ee79f5c972bb786ddda",
|
677 |
+
"version_major": 2,
|
678 |
+
"version_minor": 0
|
679 |
+
},
|
680 |
+
"text/plain": [
|
681 |
+
"Resolving data files: 0%| | 0/27 [00:00<?, ?it/s]"
|
682 |
+
]
|
683 |
+
},
|
684 |
+
"metadata": {},
|
685 |
+
"output_type": "display_data"
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"data": {
|
689 |
+
"application/vnd.jupyter.widget-view+json": {
|
690 |
+
"model_id": "4ece62cf670f441181bce789dbabb38d",
|
691 |
+
"version_major": 2,
|
692 |
+
"version_minor": 0
|
693 |
+
},
|
694 |
+
"text/plain": [
|
695 |
+
"Resolving data files: 0%| | 0/27 [00:00<?, ?it/s]"
|
696 |
+
]
|
697 |
+
},
|
698 |
+
"metadata": {},
|
699 |
+
"output_type": "display_data"
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"data": {
|
703 |
+
"application/vnd.jupyter.widget-view+json": {
|
704 |
+
"model_id": "368b3734b6094270874bc9ed05220b43",
|
705 |
+
"version_major": 2,
|
706 |
+
"version_minor": 0
|
707 |
+
},
|
708 |
+
"text/plain": [
|
709 |
+
"Downloading data: 0%| | 0/27 [00:00<?, ?files/s]"
|
710 |
+
]
|
711 |
+
},
|
712 |
+
"metadata": {},
|
713 |
+
"output_type": "display_data"
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"data": {
|
717 |
+
"application/vnd.jupyter.widget-view+json": {
|
718 |
+
"model_id": "e002292c8f73473ba28b353594d047a0",
|
719 |
+
"version_major": 2,
|
720 |
+
"version_minor": 0
|
721 |
+
},
|
722 |
+
"text/plain": [
|
723 |
+
"train-00000-of-00027.parquet: 0%| | 0.00/497M [00:00<?, ?B/s]"
|
724 |
+
]
|
725 |
+
},
|
726 |
+
"metadata": {},
|
727 |
+
"output_type": "display_data"
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"data": {
|
731 |
+
"application/vnd.jupyter.widget-view+json": {
|
732 |
+
"model_id": "b6ec67734a7644c49c6d222db885d9fa",
|
733 |
+
"version_major": 2,
|
734 |
+
"version_minor": 0
|
735 |
+
},
|
736 |
+
"text/plain": [
|
737 |
+
"train-00001-of-00027.parquet: 0%| | 0.00/504M [00:00<?, ?B/s]"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
"metadata": {},
|
741 |
+
"output_type": "display_data"
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"data": {
|
745 |
+
"application/vnd.jupyter.widget-view+json": {
|
746 |
+
"model_id": "d04c94230afb42c4b5488d1517c63fd6",
|
747 |
+
"version_major": 2,
|
748 |
+
"version_minor": 0
|
749 |
+
},
|
750 |
+
"text/plain": [
|
751 |
+
"train-00002-of-00027.parquet: 0%| | 0.00/490M [00:00<?, ?B/s]"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
"metadata": {},
|
755 |
+
"output_type": "display_data"
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"data": {
|
759 |
+
"application/vnd.jupyter.widget-view+json": {
|
760 |
+
"model_id": "0fd069cace5146b8be5b44a89dae32dd",
|
761 |
+
"version_major": 2,
|
762 |
+
"version_minor": 0
|
763 |
+
},
|
764 |
+
"text/plain": [
|
765 |
+
"train-00003-of-00027.parquet: 0%| | 0.00/485M [00:00<?, ?B/s]"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
"metadata": {},
|
769 |
+
"output_type": "display_data"
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"data": {
|
773 |
+
"application/vnd.jupyter.widget-view+json": {
|
774 |
+
"model_id": "e23e8d0ecb394513907c6ecb4a30783d",
|
775 |
+
"version_major": 2,
|
776 |
+
"version_minor": 0
|
777 |
+
},
|
778 |
+
"text/plain": [
|
779 |
+
"train-00004-of-00027.parquet: 0%| | 0.00/510M [00:00<?, ?B/s]"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
"metadata": {},
|
783 |
+
"output_type": "display_data"
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"data": {
|
787 |
+
"application/vnd.jupyter.widget-view+json": {
|
788 |
+
"model_id": "6d0a484c03274c628585bfd3938dd5dd",
|
789 |
+
"version_major": 2,
|
790 |
+
"version_minor": 0
|
791 |
+
},
|
792 |
+
"text/plain": [
|
793 |
+
"train-00005-of-00027.parquet: 0%| | 0.00/498M [00:00<?, ?B/s]"
|
794 |
+
]
|
795 |
+
},
|
796 |
+
"metadata": {},
|
797 |
+
"output_type": "display_data"
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"data": {
|
801 |
+
"application/vnd.jupyter.widget-view+json": {
|
802 |
+
"model_id": "8a9d84a4ba4c4a9d8762845b466159dc",
|
803 |
+
"version_major": 2,
|
804 |
+
"version_minor": 0
|
805 |
+
},
|
806 |
+
"text/plain": [
|
807 |
+
"train-00006-of-00027.parquet: 0%| | 0.00/532M [00:00<?, ?B/s]"
|
808 |
+
]
|
809 |
+
},
|
810 |
+
"metadata": {},
|
811 |
+
"output_type": "display_data"
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"data": {
|
815 |
+
"application/vnd.jupyter.widget-view+json": {
|
816 |
+
"model_id": "ac978b853b8f4ce48b2240adad35813c",
|
817 |
+
"version_major": 2,
|
818 |
+
"version_minor": 0
|
819 |
+
},
|
820 |
+
"text/plain": [
|
821 |
+
"train-00007-of-00027.parquet: 0%| | 0.00/482M [00:00<?, ?B/s]"
|
822 |
+
]
|
823 |
+
},
|
824 |
+
"metadata": {},
|
825 |
+
"output_type": "display_data"
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"data": {
|
829 |
+
"application/vnd.jupyter.widget-view+json": {
|
830 |
+
"model_id": "dc39d2085a8748269438f3f518a936fa",
|
831 |
+
"version_major": 2,
|
832 |
+
"version_minor": 0
|
833 |
+
},
|
834 |
+
"text/plain": [
|
835 |
+
"train-00008-of-00027.parquet: 0%| | 0.00/497M [00:00<?, ?B/s]"
|
836 |
+
]
|
837 |
+
},
|
838 |
+
"metadata": {},
|
839 |
+
"output_type": "display_data"
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"data": {
|
843 |
+
"application/vnd.jupyter.widget-view+json": {
|
844 |
+
"model_id": "efd5dd9b5acf4a00b9fad256b239fe25",
|
845 |
+
"version_major": 2,
|
846 |
+
"version_minor": 0
|
847 |
+
},
|
848 |
+
"text/plain": [
|
849 |
+
"train-00009-of-00027.parquet: 0%| | 0.00/489M [00:00<?, ?B/s]"
|
850 |
+
]
|
851 |
+
},
|
852 |
+
"metadata": {},
|
853 |
+
"output_type": "display_data"
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"data": {
|
857 |
+
"application/vnd.jupyter.widget-view+json": {
|
858 |
+
"model_id": "0ee7a5cdf9fc44fb95a02a215db064b1",
|
859 |
+
"version_major": 2,
|
860 |
+
"version_minor": 0
|
861 |
+
},
|
862 |
+
"text/plain": [
|
863 |
+
"train-00010-of-00027.parquet: 0%| | 0.00/484M [00:00<?, ?B/s]"
|
864 |
+
]
|
865 |
+
},
|
866 |
+
"metadata": {},
|
867 |
+
"output_type": "display_data"
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"data": {
|
871 |
+
"application/vnd.jupyter.widget-view+json": {
|
872 |
+
"model_id": "d2bc061d040440d48bd1e068e7d0e754",
|
873 |
+
"version_major": 2,
|
874 |
+
"version_minor": 0
|
875 |
+
},
|
876 |
+
"text/plain": [
|
877 |
+
"train-00011-of-00027.parquet: 0%| | 0.00/508M [00:00<?, ?B/s]"
|
878 |
+
]
|
879 |
+
},
|
880 |
+
"metadata": {},
|
881 |
+
"output_type": "display_data"
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"data": {
|
885 |
+
"application/vnd.jupyter.widget-view+json": {
|
886 |
+
"model_id": "290a81df45914de6865a1fd538746d8b",
|
887 |
+
"version_major": 2,
|
888 |
+
"version_minor": 0
|
889 |
+
},
|
890 |
+
"text/plain": [
|
891 |
+
"train-00012-of-00027.parquet: 0%| | 0.00/490M [00:00<?, ?B/s]"
|
892 |
+
]
|
893 |
+
},
|
894 |
+
"metadata": {},
|
895 |
+
"output_type": "display_data"
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"data": {
|
899 |
+
"application/vnd.jupyter.widget-view+json": {
|
900 |
+
"model_id": "e15f56550122473eaf0b9d2c33defc7a",
|
901 |
"version_major": 2,
|
902 |
"version_minor": 0
|
903 |
},
|
|
|
911 |
{
|
912 |
"data": {
|
913 |
"application/vnd.jupyter.widget-view+json": {
|
914 |
+
"model_id": "219eeafe2fde471d9c524a8f03884678",
|
915 |
"version_major": 2,
|
916 |
"version_minor": 0
|
917 |
},
|
|
|
925 |
{
|
926 |
"data": {
|
927 |
"application/vnd.jupyter.widget-view+json": {
|
928 |
+
"model_id": "afb3a6d52a6e46268803195d3f7e0e8e",
|
929 |
"version_major": 2,
|
930 |
"version_minor": 0
|
931 |
},
|
|
|
939 |
{
|
940 |
"data": {
|
941 |
"application/vnd.jupyter.widget-view+json": {
|
942 |
+
"model_id": "fe952f2809c24da48e85d56b8de828d9",
|
943 |
"version_major": 2,
|
944 |
"version_minor": 0
|
945 |
},
|
|
|
953 |
{
|
954 |
"data": {
|
955 |
"application/vnd.jupyter.widget-view+json": {
|
956 |
+
"model_id": "09e7e2783b464c6197bebcbe45364e65",
|
957 |
"version_major": 2,
|
958 |
"version_minor": 0
|
959 |
},
|
|
|
967 |
{
|
968 |
"data": {
|
969 |
"application/vnd.jupyter.widget-view+json": {
|
970 |
+
"model_id": "f2142baf4df04c2e8fac7fda5cc4a4b4",
|
971 |
"version_major": 2,
|
972 |
"version_minor": 0
|
973 |
},
|
|
|
981 |
{
|
982 |
"data": {
|
983 |
"application/vnd.jupyter.widget-view+json": {
|
984 |
+
"model_id": "ce16d5ccf5a244279e29b26f6b9f159f",
|
985 |
"version_major": 2,
|
986 |
"version_minor": 0
|
987 |
},
|
|
|
995 |
{
|
996 |
"data": {
|
997 |
"application/vnd.jupyter.widget-view+json": {
|
998 |
+
"model_id": "d53b88d0ad5049e493578571a0d33740",
|
999 |
"version_major": 2,
|
1000 |
"version_minor": 0
|
1001 |
},
|
|
|
1009 |
{
|
1010 |
"data": {
|
1011 |
"application/vnd.jupyter.widget-view+json": {
|
1012 |
+
"model_id": "785e664dba3a40edb3858acccf6a07b0",
|
1013 |
"version_major": 2,
|
1014 |
"version_minor": 0
|
1015 |
},
|
|
|
1023 |
{
|
1024 |
"data": {
|
1025 |
"application/vnd.jupyter.widget-view+json": {
|
1026 |
+
"model_id": "ab300b08c57247d5a972d0d77acfddf4",
|
1027 |
"version_major": 2,
|
1028 |
"version_minor": 0
|
1029 |
},
|
|
|
1037 |
{
|
1038 |
"data": {
|
1039 |
"application/vnd.jupyter.widget-view+json": {
|
1040 |
+
"model_id": "00ab18dd02f34aa3a658b456d8bfe390",
|
1041 |
"version_major": 2,
|
1042 |
"version_minor": 0
|
1043 |
},
|
|
|
1051 |
{
|
1052 |
"data": {
|
1053 |
"application/vnd.jupyter.widget-view+json": {
|
1054 |
+
"model_id": "421d90d57c8e44a48479eef2eb40a479",
|
1055 |
"version_major": 2,
|
1056 |
"version_minor": 0
|
1057 |
},
|
|
|
1065 |
{
|
1066 |
"data": {
|
1067 |
"application/vnd.jupyter.widget-view+json": {
|
1068 |
+
"model_id": "60abcaa9df3d43a99ef1e07e9b7fbe11",
|
1069 |
"version_major": 2,
|
1070 |
"version_minor": 0
|
1071 |
},
|
|
|
1079 |
{
|
1080 |
"data": {
|
1081 |
"application/vnd.jupyter.widget-view+json": {
|
1082 |
+
"model_id": "79af8edddbfe4543a00e47d5f697866d",
|
1083 |
"version_major": 2,
|
1084 |
"version_minor": 0
|
1085 |
},
|
|
|
1093 |
{
|
1094 |
"data": {
|
1095 |
"application/vnd.jupyter.widget-view+json": {
|
1096 |
+
"model_id": "9d14e22b823d4c9e85b17e4dbd57fec6",
|
1097 |
"version_major": 2,
|
1098 |
"version_minor": 0
|
1099 |
},
|
|
|
1107 |
{
|
1108 |
"data": {
|
1109 |
"application/vnd.jupyter.widget-view+json": {
|
1110 |
+
"model_id": "ee5ba070e76b4854aadfac59b0237fbf",
|
1111 |
"version_major": 2,
|
1112 |
"version_minor": 0
|
1113 |
},
|
|
|
1121 |
{
|
1122 |
"data": {
|
1123 |
"application/vnd.jupyter.widget-view+json": {
|
1124 |
+
"model_id": "8ce96862fb234f6ea335071fc8114574",
|
1125 |
"version_major": 2,
|
1126 |
"version_minor": 0
|
1127 |
},
|
|
|
1135 |
{
|
1136 |
"data": {
|
1137 |
"application/vnd.jupyter.widget-view+json": {
|
1138 |
+
"model_id": "dd5860de108f49e5bcc609bb11a646df",
|
1139 |
"version_major": 2,
|
1140 |
"version_minor": 0
|
1141 |
},
|
|
|
1149 |
{
|
1150 |
"data": {
|
1151 |
"application/vnd.jupyter.widget-view+json": {
|
1152 |
+
"model_id": "bef0c258e4764f0ab9406467f01752a9",
|
1153 |
"version_major": 2,
|
1154 |
"version_minor": 0
|
1155 |
},
|
|
|
1163 |
{
|
1164 |
"data": {
|
1165 |
"application/vnd.jupyter.widget-view+json": {
|
1166 |
+
"model_id": "6c4d53689dad43dd8db780522139f599",
|
1167 |
"version_major": 2,
|
1168 |
"version_minor": 0
|
1169 |
},
|
|
|
1177 |
{
|
1178 |
"data": {
|
1179 |
"application/vnd.jupyter.widget-view+json": {
|
1180 |
+
"model_id": "d50075ea0fcd4a34ac88ed121b1e90bf",
|
1181 |
"version_major": 2,
|
1182 |
"version_minor": 0
|
1183 |
},
|
|
|
1191 |
{
|
1192 |
"data": {
|
1193 |
"application/vnd.jupyter.widget-view+json": {
|
1194 |
+
"model_id": "a4e15de7a1c54400a1ebff02d4caa657",
|
1195 |
"version_major": 2,
|
1196 |
"version_minor": 0
|
1197 |
},
|
|
|
1205 |
{
|
1206 |
"data": {
|
1207 |
"application/vnd.jupyter.widget-view+json": {
|
1208 |
+
"model_id": "41fc8cb29962483e81fa8a640f633d46",
|
1209 |
"version_major": 2,
|
1210 |
"version_minor": 0
|
1211 |
},
|
|
|
1219 |
{
|
1220 |
"data": {
|
1221 |
"application/vnd.jupyter.widget-view+json": {
|
1222 |
+
"model_id": "388b29f8655b4fee87db053d591bd72d",
|
1223 |
"version_major": 2,
|
1224 |
"version_minor": 0
|
1225 |
},
|
|
|
1233 |
{
|
1234 |
"data": {
|
1235 |
"application/vnd.jupyter.widget-view+json": {
|
1236 |
+
"model_id": "6c75919875544db98ee2c64215ecff97",
|
1237 |
"version_major": 2,
|
1238 |
"version_minor": 0
|
1239 |
},
|
|
|
1247 |
{
|
1248 |
"data": {
|
1249 |
"application/vnd.jupyter.widget-view+json": {
|
1250 |
+
"model_id": "a4e8b6ecaf734f33a842f60681e23108",
|
1251 |
"version_major": 2,
|
1252 |
"version_minor": 0
|
1253 |
},
|
|
|
1261 |
{
|
1262 |
"data": {
|
1263 |
"application/vnd.jupyter.widget-view+json": {
|
1264 |
+
"model_id": "7e497cfcd6f04a94aa0ac40d6df938b1",
|
1265 |
"version_major": 2,
|
1266 |
"version_minor": 0
|
1267 |
},
|
|
|
1275 |
{
|
1276 |
"data": {
|
1277 |
"application/vnd.jupyter.widget-view+json": {
|
1278 |
+
"model_id": "56cde5f680f643be887d6f9f804676c9",
|
1279 |
"version_major": 2,
|
1280 |
"version_minor": 0
|
1281 |
},
|
|
|
1289 |
{
|
1290 |
"data": {
|
1291 |
"application/vnd.jupyter.widget-view+json": {
|
1292 |
+
"model_id": "fbcf378be86c40cdbf606a2446d1a252",
|
1293 |
"version_major": 2,
|
1294 |
"version_minor": 0
|
1295 |
},
|
|
|
1303 |
{
|
1304 |
"data": {
|
1305 |
"application/vnd.jupyter.widget-view+json": {
|
1306 |
+
"model_id": "963491aad1f945cfb5811d7239880b54",
|
1307 |
"version_major": 2,
|
1308 |
"version_minor": 0
|
1309 |
},
|
|
|
1334 |
},
|
1335 |
{
|
1336 |
"cell_type": "code",
|
1337 |
+
"execution_count": 5,
|
1338 |
"metadata": {
|
1339 |
"colab": {
|
1340 |
"base_uri": "https://localhost:8080/"
|
|
|
1362 |
" 'cui': ['C0037005']}"
|
1363 |
]
|
1364 |
},
|
1365 |
+
"execution_count": 5,
|
1366 |
"metadata": {},
|
1367 |
"output_type": "execute_result"
|
1368 |
}
|
|
|
1373 |
},
|
1374 |
{
|
1375 |
"cell_type": "code",
|
1376 |
+
"execution_count": 6,
|
1377 |
"metadata": {
|
1378 |
"colab": {
|
1379 |
"base_uri": "https://localhost:8080/",
|
|
|
1402 |
"<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1684x2294>"
|
1403 |
]
|
1404 |
},
|
1405 |
+
"execution_count": 6,
|
1406 |
"metadata": {},
|
1407 |
"output_type": "execute_result"
|
1408 |
}
|
|
|
1422 |
},
|
1423 |
{
|
1424 |
"cell_type": "code",
|
1425 |
+
"execution_count": 7,
|
1426 |
"metadata": {
|
1427 |
"colab": {
|
1428 |
"base_uri": "https://localhost:8080/",
|
|
|
1465 |
{
|
1466 |
"data": {
|
1467 |
"application/vnd.jupyter.widget-view+json": {
|
1468 |
+
"model_id": "f8115bd39ceb47678208bc6dc80a179a",
|
1469 |
"version_major": 2,
|
1470 |
"version_minor": 0
|
1471 |
},
|
|
|
1479 |
{
|
1480 |
"data": {
|
1481 |
"application/vnd.jupyter.widget-view+json": {
|
1482 |
+
"model_id": "195ef910bea946cbac27ae80d12ab37d",
|
1483 |
"version_major": 2,
|
1484 |
"version_minor": 0
|
1485 |
},
|
|
|
1493 |
{
|
1494 |
"data": {
|
1495 |
"application/vnd.jupyter.widget-view+json": {
|
1496 |
+
"model_id": "ee41668130414ec29bd670a4c00ea9dd",
|
1497 |
"version_major": 2,
|
1498 |
"version_minor": 0
|
1499 |
},
|
|
|
1507 |
{
|
1508 |
"data": {
|
1509 |
"application/vnd.jupyter.widget-view+json": {
|
1510 |
+
"model_id": "cae512d46a20437cb2b9054e6d796129",
|
1511 |
"version_major": 2,
|
1512 |
"version_minor": 0
|
1513 |
},
|
|
|
1521 |
{
|
1522 |
"data": {
|
1523 |
"application/vnd.jupyter.widget-view+json": {
|
1524 |
+
"model_id": "15b4f6ea701b40f984b45da569b8fd50",
|
1525 |
"version_major": 2,
|
1526 |
"version_minor": 0
|
1527 |
},
|
|
|
1535 |
{
|
1536 |
"data": {
|
1537 |
"application/vnd.jupyter.widget-view+json": {
|
1538 |
+
"model_id": "711ead0dc9ba4017a5755a1cc111d8c3",
|
1539 |
"version_major": 2,
|
1540 |
"version_minor": 0
|
1541 |
},
|
|
|
1549 |
{
|
1550 |
"data": {
|
1551 |
"application/vnd.jupyter.widget-view+json": {
|
1552 |
+
"model_id": "009a9836643d4a1285ba017cb6dee9fb",
|
1553 |
"version_major": 2,
|
1554 |
"version_minor": 0
|
1555 |
},
|
|
|
1570 |
{
|
1571 |
"data": {
|
1572 |
"application/vnd.jupyter.widget-view+json": {
|
1573 |
+
"model_id": "1078bb163ca14f4cb242b3afb81b6a70",
|
1574 |
"version_major": 2,
|
1575 |
"version_minor": 0
|
1576 |
},
|
|
|
1584 |
{
|
1585 |
"data": {
|
1586 |
"application/vnd.jupyter.widget-view+json": {
|
1587 |
+
"model_id": "813c7b8d26224b07893f652c1ab25acf",
|
1588 |
"version_major": 2,
|
1589 |
"version_minor": 0
|
1590 |
},
|
|
|
1598 |
{
|
1599 |
"data": {
|
1600 |
"application/vnd.jupyter.widget-view+json": {
|
1601 |
+
"model_id": "8f312307a8c34e9ebac5a4006cb75b15",
|
1602 |
"version_major": 2,
|
1603 |
"version_minor": 0
|
1604 |
},
|
|
|
1612 |
{
|
1613 |
"data": {
|
1614 |
"application/vnd.jupyter.widget-view+json": {
|
1615 |
+
"model_id": "6805d6a27b4b404594f644d8289e3e0c",
|
1616 |
"version_major": 2,
|
1617 |
"version_minor": 0
|
1618 |
},
|
|
|
1626 |
{
|
1627 |
"data": {
|
1628 |
"application/vnd.jupyter.widget-view+json": {
|
1629 |
+
"model_id": "dfa588033e244ba0aef4875d4dca0087",
|
1630 |
"version_major": 2,
|
1631 |
"version_minor": 0
|
1632 |
},
|
|
|
1640 |
{
|
1641 |
"data": {
|
1642 |
"application/vnd.jupyter.widget-view+json": {
|
1643 |
+
"model_id": "de1b8cc27c5744b4b34b48e7a1fb7a00",
|
1644 |
"version_major": 2,
|
1645 |
"version_minor": 0
|
1646 |
},
|
|
|
1654 |
{
|
1655 |
"data": {
|
1656 |
"application/vnd.jupyter.widget-view+json": {
|
1657 |
+
"model_id": "79b23b4c9373457fb28a1cdcc1b23277",
|
1658 |
"version_major": 2,
|
1659 |
"version_minor": 0
|
1660 |
},
|
|
|
1668 |
{
|
1669 |
"data": {
|
1670 |
"application/vnd.jupyter.widget-view+json": {
|
1671 |
+
"model_id": "02c68a9944a44dcc882dcaa7722dfa9b",
|
1672 |
"version_major": 2,
|
1673 |
"version_minor": 0
|
1674 |
},
|
|
|
1963 |
"source": [
|
1964 |
"trainer.train()"
|
1965 |
]
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"cell_type": "code",
|
1969 |
+
"execution_count": 11,
|
1970 |
+
"metadata": {},
|
1971 |
+
"outputs": [
|
1972 |
+
{
|
1973 |
+
"data": {
|
1974 |
+
"application/vnd.jupyter.widget-view+json": {
|
1975 |
+
"model_id": "1694c769eb91432a90f7e6a69bfc8367",
|
1976 |
+
"version_major": 2,
|
1977 |
+
"version_minor": 0
|
1978 |
+
},
|
1979 |
+
"text/plain": [
|
1980 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
1981 |
+
]
|
1982 |
+
},
|
1983 |
+
"metadata": {},
|
1984 |
+
"output_type": "display_data"
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"ename": "OutOfMemoryError",
|
1988 |
+
"evalue": "CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 6.00 GiB of which 0 bytes is free. Of the allocated memory 20.39 GiB is allocated by PyTorch, and 155.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
|
1989 |
+
"output_type": "error",
|
1990 |
+
"traceback": [
|
1991 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1992 |
+
"\u001b[0;31mOutOfMemoryError\u001b[0m Traceback (most recent call last)",
|
1993 |
+
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m model \u001b[38;5;241m=\u001b[39m Idefics3ForConditionalGeneration\u001b[38;5;241m.\u001b[39mfrom_pretrained(source_model_id , torch_dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mbfloat16)\u001b[38;5;241m.\u001b[39mto(DEVICE)\n\u001b[1;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mload_adapter(destination_model_id, device_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
1994 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/transformers/modeling_utils.py:3167\u001b[0m, in \u001b[0;36mPreTrainedModel.to\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3162\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_present_in_args:\n\u001b[1;32m 3163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 3164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3165\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m `dtype` by passing the correct `torch_dtype` argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3166\u001b[0m )\n\u001b[0;32m-> 3167\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
|
1995 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:1340\u001b[0m, in \u001b[0;36mModule.to\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1337\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1338\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m-> 1340\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_apply(convert)\n",
|
1996 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:900\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 898\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 899\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 900\u001b[0m module\u001b[38;5;241m.\u001b[39m_apply(fn)\n\u001b[1;32m 902\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 903\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 904\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 905\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 911\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
|
1997 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:900\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 898\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 899\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 900\u001b[0m module\u001b[38;5;241m.\u001b[39m_apply(fn)\n\u001b[1;32m 902\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 903\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 904\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 905\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 911\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
|
1998 |
+
" \u001b[0;31m[... skipping similar frames: Module._apply at line 900 (4 times)]\u001b[0m\n",
|
1999 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:900\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 898\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m recurse:\n\u001b[1;32m 899\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m module \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mchildren():\n\u001b[0;32m--> 900\u001b[0m module\u001b[38;5;241m.\u001b[39m_apply(fn)\n\u001b[1;32m 902\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 903\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 904\u001b[0m \u001b[38;5;66;03m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 905\u001b[0m \u001b[38;5;66;03m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[38;5;66;03m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 911\u001b[0m \u001b[38;5;66;03m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
|
2000 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:927\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn, recurse)\u001b[0m\n\u001b[1;32m 923\u001b[0m \u001b[38;5;66;03m# Tensors stored in modules are graph leaves, and we don't want to\u001b[39;00m\n\u001b[1;32m 924\u001b[0m \u001b[38;5;66;03m# track autograd history of `param_applied`, so we have to use\u001b[39;00m\n\u001b[1;32m 925\u001b[0m \u001b[38;5;66;03m# `with torch.no_grad():`\u001b[39;00m\n\u001b[1;32m 926\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m--> 927\u001b[0m param_applied \u001b[38;5;241m=\u001b[39m fn(param)\n\u001b[1;32m 928\u001b[0m p_should_use_set_data \u001b[38;5;241m=\u001b[39m compute_should_use_set_data(param, param_applied)\n\u001b[1;32m 930\u001b[0m \u001b[38;5;66;03m# subclasses may have multiple child tensors so we need to use swap_tensors\u001b[39;00m\n",
|
2001 |
+
"File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py:1326\u001b[0m, in \u001b[0;36mModule.to.<locals>.convert\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m convert_to_format \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m t\u001b[38;5;241m.\u001b[39mdim() \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;241m4\u001b[39m, \u001b[38;5;241m5\u001b[39m):\n\u001b[1;32m 1320\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m t\u001b[38;5;241m.\u001b[39mto(\n\u001b[1;32m 1321\u001b[0m device,\n\u001b[1;32m 1322\u001b[0m dtype \u001b[38;5;28;01mif\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_floating_point() \u001b[38;5;129;01mor\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_complex() \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1323\u001b[0m non_blocking,\n\u001b[1;32m 1324\u001b[0m memory_format\u001b[38;5;241m=\u001b[39mconvert_to_format,\n\u001b[1;32m 1325\u001b[0m )\n\u001b[0;32m-> 1326\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m t\u001b[38;5;241m.\u001b[39mto(\n\u001b[1;32m 1327\u001b[0m device,\n\u001b[1;32m 1328\u001b[0m dtype \u001b[38;5;28;01mif\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_floating_point() \u001b[38;5;129;01mor\u001b[39;00m t\u001b[38;5;241m.\u001b[39mis_complex() \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1329\u001b[0m non_blocking,\n\u001b[1;32m 1330\u001b[0m )\n\u001b[1;32m 1331\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1332\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(e) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot copy out of meta tensor; no data!\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
|
2002 |
+
"\u001b[0;31mOutOfMemoryError\u001b[0m: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 6.00 GiB of which 0 bytes is free. Of the allocated memory 20.39 GiB is allocated by PyTorch, and 155.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)"
|
2003 |
+
]
|
2004 |
+
}
|
2005 |
+
],
|
2006 |
+
"source": [
|
2007 |
+
"model = Idefics3ForConditionalGeneration.from_pretrained(source_model_id , torch_dtype=torch.bfloat16).to(DEVICE)\n",
|
2008 |
+
"model.load_adapter(destination_model_id, device_map=\"auto\")"
|
2009 |
+
]
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"cell_type": "code",
|
2013 |
+
"execution_count": null,
|
2014 |
+
"metadata": {},
|
2015 |
+
"outputs": [],
|
2016 |
+
"source": []
|
2017 |
}
|
2018 |
],
|
2019 |
"metadata": {
|
|
|
14699 |
}
|
14700 |
},
|
14701 |
"nbformat": 4,
|
14702 |
+
"nbformat_minor": 4
|
14703 |
}
|