End of training
Browse files- README.md +79 -0
- logs/events.out.tfevents.1667593569.244c8c74672f.78.0 +2 -2
- preprocessor_config.json +10 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +39 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- funsd
|
6 |
+
model-index:
|
7 |
+
- name: layoutlm-funsd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# layoutlm-funsd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7158
|
19 |
+
- Answer: {'precision': 0.7149220489977728, 'recall': 0.7935723114956736, 'f1': 0.7521968365553603, 'number': 809}
|
20 |
+
- Header: {'precision': 0.3063063063063063, 'recall': 0.2857142857142857, 'f1': 0.2956521739130435, 'number': 119}
|
21 |
+
- Question: {'precision': 0.7892857142857143, 'recall': 0.8300469483568075, 'f1': 0.8091533180778031, 'number': 1065}
|
22 |
+
- Overall Precision: 0.7327
|
23 |
+
- Overall Recall: 0.7827
|
24 |
+
- Overall F1: 0.7569
|
25 |
+
- Overall Accuracy: 0.8108
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 15
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.8132 | 1.0 | 10 | 1.6191 | {'precision': 0.015122873345935728, 'recall': 0.019777503090234856, 'f1': 0.01713979646491698, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1685508735868448, 'recall': 0.1539906103286385, 'f1': 0.16094210009813542, 'number': 1065} | 0.0886 | 0.0903 | 0.0895 | 0.3534 |
|
58 |
+
| 1.4783 | 2.0 | 20 | 1.2483 | {'precision': 0.12857142857142856, 'recall': 0.12237330037082818, 'f1': 0.1253958201393287, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4541955350269438, 'recall': 0.5539906103286385, 'f1': 0.4991539763113368, 'number': 1065} | 0.3330 | 0.3457 | 0.3392 | 0.5682 |
|
59 |
+
| 1.1072 | 3.0 | 30 | 0.9718 | {'precision': 0.42777155655095184, 'recall': 0.4721878862793572, 'f1': 0.4488836662749706, 'number': 809} | {'precision': 0.04, 'recall': 0.008403361344537815, 'f1': 0.01388888888888889, 'number': 119} | {'precision': 0.6266205704407951, 'recall': 0.6807511737089202, 'f1': 0.6525652565256526, 'number': 1065} | 0.5340 | 0.5559 | 0.5447 | 0.7070 |
|
60 |
+
| 0.8444 | 4.0 | 40 | 0.7957 | {'precision': 0.6296296296296297, 'recall': 0.7354758961681088, 'f1': 0.6784492588369442, 'number': 809} | {'precision': 0.19230769230769232, 'recall': 0.08403361344537816, 'f1': 0.11695906432748539, 'number': 119} | {'precision': 0.6831168831168831, 'recall': 0.7408450704225352, 'f1': 0.7108108108108109, 'number': 1065} | 0.6478 | 0.6994 | 0.6726 | 0.7651 |
|
61 |
+
| 0.6845 | 5.0 | 50 | 0.7443 | {'precision': 0.6530612244897959, 'recall': 0.7515451174289246, 'f1': 0.6988505747126437, 'number': 809} | {'precision': 0.23684210526315788, 'recall': 0.15126050420168066, 'f1': 0.1846153846153846, 'number': 119} | {'precision': 0.7318181818181818, 'recall': 0.755868544600939, 'f1': 0.74364896073903, 'number': 1065} | 0.6792 | 0.7180 | 0.6980 | 0.7736 |
|
62 |
+
| 0.5597 | 6.0 | 60 | 0.6918 | {'precision': 0.6673706441393875, 'recall': 0.7812113720642769, 'f1': 0.7198177676537586, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.15126050420168066, 'f1': 0.1978021978021978, 'number': 119} | {'precision': 0.7344150298889838, 'recall': 0.8075117370892019, 'f1': 0.7692307692307693, 'number': 1065} | 0.6923 | 0.7577 | 0.7235 | 0.7933 |
|
63 |
+
| 0.4929 | 7.0 | 70 | 0.6803 | {'precision': 0.6694825765575502, 'recall': 0.7836835599505563, 'f1': 0.7220956719817767, 'number': 809} | {'precision': 0.21818181818181817, 'recall': 0.20168067226890757, 'f1': 0.2096069868995633, 'number': 119} | {'precision': 0.7467134092900964, 'recall': 0.8, 'f1': 0.772438803263826, 'number': 1065} | 0.6870 | 0.7577 | 0.7206 | 0.7945 |
|
64 |
+
| 0.4447 | 8.0 | 80 | 0.6814 | {'precision': 0.6866158868335147, 'recall': 0.7799752781211372, 'f1': 0.7303240740740741, 'number': 809} | {'precision': 0.26506024096385544, 'recall': 0.18487394957983194, 'f1': 0.21782178217821785, 'number': 119} | {'precision': 0.7810283687943262, 'recall': 0.8272300469483568, 'f1': 0.8034655722754217, 'number': 1065} | 0.7202 | 0.7697 | 0.7441 | 0.8024 |
|
65 |
+
| 0.3953 | 9.0 | 90 | 0.6739 | {'precision': 0.7015765765765766, 'recall': 0.7700865265760197, 'f1': 0.7342368886269888, 'number': 809} | {'precision': 0.2920353982300885, 'recall': 0.2773109243697479, 'f1': 0.28448275862068967, 'number': 119} | {'precision': 0.7753496503496503, 'recall': 0.8328638497652582, 'f1': 0.8030783159800814, 'number': 1065} | 0.7193 | 0.7742 | 0.7458 | 0.8115 |
|
66 |
+
| 0.3538 | 10.0 | 100 | 0.6853 | {'precision': 0.7081497797356828, 'recall': 0.7948084054388134, 'f1': 0.7489807804309844, 'number': 809} | {'precision': 0.32673267326732675, 'recall': 0.2773109243697479, 'f1': 0.30000000000000004, 'number': 119} | {'precision': 0.7804878048780488, 'recall': 0.8413145539906103, 'f1': 0.8097605061003164, 'number': 1065} | 0.7288 | 0.7888 | 0.7576 | 0.8152 |
|
67 |
+
| 0.3262 | 11.0 | 110 | 0.6948 | {'precision': 0.7058177826564215, 'recall': 0.7948084054388134, 'f1': 0.7476744186046511, 'number': 809} | {'precision': 0.35051546391752575, 'recall': 0.2857142857142857, 'f1': 0.3148148148148148, 'number': 119} | {'precision': 0.8032638259292838, 'recall': 0.831924882629108, 'f1': 0.8173431734317343, 'number': 1065} | 0.7404 | 0.7842 | 0.7617 | 0.8129 |
|
68 |
+
| 0.3094 | 12.0 | 120 | 0.6989 | {'precision': 0.7128603104212861, 'recall': 0.7948084054388134, 'f1': 0.7516072472238456, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.29411764705882354, 'f1': 0.3125, 'number': 119} | {'precision': 0.7987364620938628, 'recall': 0.8309859154929577, 'f1': 0.8145421076852278, 'number': 1065} | 0.7390 | 0.7842 | 0.7610 | 0.8138 |
|
69 |
+
| 0.2941 | 13.0 | 130 | 0.7134 | {'precision': 0.7239819004524887, 'recall': 0.7911001236093943, 'f1': 0.7560543414057885, 'number': 809} | {'precision': 0.32710280373831774, 'recall': 0.29411764705882354, 'f1': 0.3097345132743363, 'number': 119} | {'precision': 0.7998204667863554, 'recall': 0.8366197183098592, 'f1': 0.8178063331803579, 'number': 1065} | 0.7439 | 0.7858 | 0.7643 | 0.8115 |
|
70 |
+
| 0.2813 | 14.0 | 140 | 0.7138 | {'precision': 0.7106710671067107, 'recall': 0.7985166872682324, 'f1': 0.7520372526193247, 'number': 809} | {'precision': 0.3119266055045872, 'recall': 0.2857142857142857, 'f1': 0.2982456140350877, 'number': 119} | {'precision': 0.7935656836461126, 'recall': 0.8338028169014085, 'f1': 0.8131868131868133, 'number': 1065} | 0.7337 | 0.7868 | 0.7593 | 0.8109 |
|
71 |
+
| 0.2812 | 15.0 | 150 | 0.7158 | {'precision': 0.7149220489977728, 'recall': 0.7935723114956736, 'f1': 0.7521968365553603, 'number': 809} | {'precision': 0.3063063063063063, 'recall': 0.2857142857142857, 'f1': 0.2956521739130435, 'number': 119} | {'precision': 0.7892857142857143, 'recall': 0.8300469483568075, 'f1': 0.8091533180778031, 'number': 1065} | 0.7327 | 0.7827 | 0.7569 | 0.8108 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.24.0
|
77 |
+
- Pytorch 1.12.1+cu113
|
78 |
+
- Datasets 2.6.1
|
79 |
+
- Tokenizers 0.13.1
|
logs/events.out.tfevents.1667593569.244c8c74672f.78.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c50aa91fc5928f514a97fffcfb655f07dc9b473314db5277219080f32550228f
|
3 |
+
size 14110
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": 224,
|
9 |
+
"tesseract_config": ""
|
10 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450606565
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f010d99b4da02a40f96c2b43da2de3830dc9023f8387faddca778c6e72481f
|
3 |
size 450606565
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"apply_ocr": false,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"cls_token_box": [
|
6 |
+
0,
|
7 |
+
0,
|
8 |
+
0,
|
9 |
+
0
|
10 |
+
],
|
11 |
+
"do_basic_tokenize": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"mask_token": "[MASK]",
|
14 |
+
"model_max_length": 512,
|
15 |
+
"name_or_path": "microsoft/layoutlmv2-base-uncased",
|
16 |
+
"never_split": null,
|
17 |
+
"only_label_first_subword": true,
|
18 |
+
"pad_token": "[PAD]",
|
19 |
+
"pad_token_box": [
|
20 |
+
0,
|
21 |
+
0,
|
22 |
+
0,
|
23 |
+
0
|
24 |
+
],
|
25 |
+
"pad_token_label": -100,
|
26 |
+
"processor_class": "LayoutLMv2Processor",
|
27 |
+
"sep_token": "[SEP]",
|
28 |
+
"sep_token_box": [
|
29 |
+
1000,
|
30 |
+
1000,
|
31 |
+
1000,
|
32 |
+
1000
|
33 |
+
],
|
34 |
+
"special_tokens_map_file": null,
|
35 |
+
"strip_accents": null,
|
36 |
+
"tokenize_chinese_chars": true,
|
37 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
38 |
+
"unk_token": "[UNK]"
|
39 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|