emilys commited on
Commit
393929d
·
1 Parent(s): c63b281

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: hmBERT-CoNLL-cp2
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ args: conll2003
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9060056562967892
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9165264220801077
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9112356730527901
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9852420077099802
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # hmBERT-CoNLL-cp2
41
+
42
+ This model is a fine-tuned version of [dbmdz/bert-base-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) on the conll2003 dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0576
45
+ - Precision: 0.9060
46
+ - Recall: 0.9165
47
+ - F1: 0.9112
48
+ - Accuracy: 0.9852
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 5e-05
68
+ - train_batch_size: 32
69
+ - eval_batch_size: 32
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 2
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 0.06 | 25 | 0.4116 | 0.3632 | 0.3718 | 0.3674 | 0.9005 |
80
+ | No log | 0.11 | 50 | 0.2247 | 0.6384 | 0.6902 | 0.6633 | 0.9459 |
81
+ | No log | 0.17 | 75 | 0.1624 | 0.7303 | 0.7627 | 0.7461 | 0.9580 |
82
+ | No log | 0.23 | 100 | 0.1541 | 0.7338 | 0.7688 | 0.7509 | 0.9588 |
83
+ | No log | 0.28 | 125 | 0.1349 | 0.7610 | 0.8095 | 0.7845 | 0.9643 |
84
+ | No log | 0.34 | 150 | 0.1230 | 0.7982 | 0.8253 | 0.8115 | 0.9694 |
85
+ | No log | 0.4 | 175 | 0.0997 | 0.8069 | 0.8406 | 0.8234 | 0.9727 |
86
+ | No log | 0.46 | 200 | 0.1044 | 0.8211 | 0.8410 | 0.8309 | 0.9732 |
87
+ | No log | 0.51 | 225 | 0.0871 | 0.8413 | 0.8603 | 0.8507 | 0.9760 |
88
+ | No log | 0.57 | 250 | 0.1066 | 0.8288 | 0.8465 | 0.8376 | 0.9733 |
89
+ | No log | 0.63 | 275 | 0.0872 | 0.8580 | 0.8667 | 0.8624 | 0.9766 |
90
+ | No log | 0.68 | 300 | 0.0834 | 0.8522 | 0.8706 | 0.8613 | 0.9773 |
91
+ | No log | 0.74 | 325 | 0.0832 | 0.8545 | 0.8834 | 0.8687 | 0.9783 |
92
+ | No log | 0.8 | 350 | 0.0776 | 0.8542 | 0.8834 | 0.8685 | 0.9787 |
93
+ | No log | 0.85 | 375 | 0.0760 | 0.8629 | 0.8896 | 0.8760 | 0.9801 |
94
+ | No log | 0.91 | 400 | 0.0673 | 0.8775 | 0.9004 | 0.8888 | 0.9824 |
95
+ | No log | 0.97 | 425 | 0.0681 | 0.8827 | 0.8938 | 0.8882 | 0.9817 |
96
+ | No log | 1.03 | 450 | 0.0659 | 0.8844 | 0.8950 | 0.8897 | 0.9824 |
97
+ | No log | 1.08 | 475 | 0.0690 | 0.8833 | 0.9015 | 0.8923 | 0.9832 |
98
+ | 0.1399 | 1.14 | 500 | 0.0666 | 0.8932 | 0.9005 | 0.8968 | 0.9832 |
99
+ | 0.1399 | 1.2 | 525 | 0.0667 | 0.8891 | 0.8997 | 0.8944 | 0.9825 |
100
+ | 0.1399 | 1.25 | 550 | 0.0699 | 0.8751 | 0.8953 | 0.8851 | 0.9820 |
101
+ | 0.1399 | 1.31 | 575 | 0.0617 | 0.8947 | 0.9068 | 0.9007 | 0.9840 |
102
+ | 0.1399 | 1.37 | 600 | 0.0633 | 0.9 | 0.9058 | 0.9029 | 0.9841 |
103
+ | 0.1399 | 1.42 | 625 | 0.0639 | 0.8966 | 0.9116 | 0.9040 | 0.9843 |
104
+ | 0.1399 | 1.48 | 650 | 0.0624 | 0.8972 | 0.9110 | 0.9041 | 0.9845 |
105
+ | 0.1399 | 1.54 | 675 | 0.0619 | 0.8980 | 0.9081 | 0.9030 | 0.9842 |
106
+ | 0.1399 | 1.59 | 700 | 0.0615 | 0.9002 | 0.9090 | 0.9045 | 0.9843 |
107
+ | 0.1399 | 1.65 | 725 | 0.0601 | 0.9037 | 0.9128 | 0.9082 | 0.9850 |
108
+ | 0.1399 | 1.71 | 750 | 0.0585 | 0.9031 | 0.9142 | 0.9086 | 0.9849 |
109
+ | 0.1399 | 1.77 | 775 | 0.0582 | 0.9035 | 0.9143 | 0.9089 | 0.9851 |
110
+ | 0.1399 | 1.82 | 800 | 0.0580 | 0.9044 | 0.9157 | 0.9100 | 0.9853 |
111
+ | 0.1399 | 1.88 | 825 | 0.0583 | 0.9034 | 0.9160 | 0.9097 | 0.9851 |
112
+ | 0.1399 | 1.94 | 850 | 0.0578 | 0.9058 | 0.9170 | 0.9114 | 0.9854 |
113
+ | 0.1399 | 1.99 | 875 | 0.0576 | 0.9060 | 0.9165 | 0.9112 | 0.9852 |
114
+
115
+
116
+ ### Framework versions
117
+
118
+ - Transformers 4.20.1
119
+ - Pytorch 1.12.0
120
+ - Datasets 2.4.0
121
+ - Tokenizers 0.12.1