update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- conll2003
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: hmBERT-CoNLL-cp2
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: conll2003
|
20 |
+
type: conll2003
|
21 |
+
args: conll2003
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.9060056562967892
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.9165264220801077
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.9112356730527901
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9852420077099802
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# hmBERT-CoNLL-cp2
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [dbmdz/bert-base-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) on the conll2003 dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.0576
|
45 |
+
- Precision: 0.9060
|
46 |
+
- Recall: 0.9165
|
47 |
+
- F1: 0.9112
|
48 |
+
- Accuracy: 0.9852
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 5e-05
|
68 |
+
- train_batch_size: 32
|
69 |
+
- eval_batch_size: 32
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 2
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 0.06 | 25 | 0.4116 | 0.3632 | 0.3718 | 0.3674 | 0.9005 |
|
80 |
+
| No log | 0.11 | 50 | 0.2247 | 0.6384 | 0.6902 | 0.6633 | 0.9459 |
|
81 |
+
| No log | 0.17 | 75 | 0.1624 | 0.7303 | 0.7627 | 0.7461 | 0.9580 |
|
82 |
+
| No log | 0.23 | 100 | 0.1541 | 0.7338 | 0.7688 | 0.7509 | 0.9588 |
|
83 |
+
| No log | 0.28 | 125 | 0.1349 | 0.7610 | 0.8095 | 0.7845 | 0.9643 |
|
84 |
+
| No log | 0.34 | 150 | 0.1230 | 0.7982 | 0.8253 | 0.8115 | 0.9694 |
|
85 |
+
| No log | 0.4 | 175 | 0.0997 | 0.8069 | 0.8406 | 0.8234 | 0.9727 |
|
86 |
+
| No log | 0.46 | 200 | 0.1044 | 0.8211 | 0.8410 | 0.8309 | 0.9732 |
|
87 |
+
| No log | 0.51 | 225 | 0.0871 | 0.8413 | 0.8603 | 0.8507 | 0.9760 |
|
88 |
+
| No log | 0.57 | 250 | 0.1066 | 0.8288 | 0.8465 | 0.8376 | 0.9733 |
|
89 |
+
| No log | 0.63 | 275 | 0.0872 | 0.8580 | 0.8667 | 0.8624 | 0.9766 |
|
90 |
+
| No log | 0.68 | 300 | 0.0834 | 0.8522 | 0.8706 | 0.8613 | 0.9773 |
|
91 |
+
| No log | 0.74 | 325 | 0.0832 | 0.8545 | 0.8834 | 0.8687 | 0.9783 |
|
92 |
+
| No log | 0.8 | 350 | 0.0776 | 0.8542 | 0.8834 | 0.8685 | 0.9787 |
|
93 |
+
| No log | 0.85 | 375 | 0.0760 | 0.8629 | 0.8896 | 0.8760 | 0.9801 |
|
94 |
+
| No log | 0.91 | 400 | 0.0673 | 0.8775 | 0.9004 | 0.8888 | 0.9824 |
|
95 |
+
| No log | 0.97 | 425 | 0.0681 | 0.8827 | 0.8938 | 0.8882 | 0.9817 |
|
96 |
+
| No log | 1.03 | 450 | 0.0659 | 0.8844 | 0.8950 | 0.8897 | 0.9824 |
|
97 |
+
| No log | 1.08 | 475 | 0.0690 | 0.8833 | 0.9015 | 0.8923 | 0.9832 |
|
98 |
+
| 0.1399 | 1.14 | 500 | 0.0666 | 0.8932 | 0.9005 | 0.8968 | 0.9832 |
|
99 |
+
| 0.1399 | 1.2 | 525 | 0.0667 | 0.8891 | 0.8997 | 0.8944 | 0.9825 |
|
100 |
+
| 0.1399 | 1.25 | 550 | 0.0699 | 0.8751 | 0.8953 | 0.8851 | 0.9820 |
|
101 |
+
| 0.1399 | 1.31 | 575 | 0.0617 | 0.8947 | 0.9068 | 0.9007 | 0.9840 |
|
102 |
+
| 0.1399 | 1.37 | 600 | 0.0633 | 0.9 | 0.9058 | 0.9029 | 0.9841 |
|
103 |
+
| 0.1399 | 1.42 | 625 | 0.0639 | 0.8966 | 0.9116 | 0.9040 | 0.9843 |
|
104 |
+
| 0.1399 | 1.48 | 650 | 0.0624 | 0.8972 | 0.9110 | 0.9041 | 0.9845 |
|
105 |
+
| 0.1399 | 1.54 | 675 | 0.0619 | 0.8980 | 0.9081 | 0.9030 | 0.9842 |
|
106 |
+
| 0.1399 | 1.59 | 700 | 0.0615 | 0.9002 | 0.9090 | 0.9045 | 0.9843 |
|
107 |
+
| 0.1399 | 1.65 | 725 | 0.0601 | 0.9037 | 0.9128 | 0.9082 | 0.9850 |
|
108 |
+
| 0.1399 | 1.71 | 750 | 0.0585 | 0.9031 | 0.9142 | 0.9086 | 0.9849 |
|
109 |
+
| 0.1399 | 1.77 | 775 | 0.0582 | 0.9035 | 0.9143 | 0.9089 | 0.9851 |
|
110 |
+
| 0.1399 | 1.82 | 800 | 0.0580 | 0.9044 | 0.9157 | 0.9100 | 0.9853 |
|
111 |
+
| 0.1399 | 1.88 | 825 | 0.0583 | 0.9034 | 0.9160 | 0.9097 | 0.9851 |
|
112 |
+
| 0.1399 | 1.94 | 850 | 0.0578 | 0.9058 | 0.9170 | 0.9114 | 0.9854 |
|
113 |
+
| 0.1399 | 1.99 | 875 | 0.0576 | 0.9060 | 0.9165 | 0.9112 | 0.9852 |
|
114 |
+
|
115 |
+
|
116 |
+
### Framework versions
|
117 |
+
|
118 |
+
- Transformers 4.20.1
|
119 |
+
- Pytorch 1.12.0
|
120 |
+
- Datasets 2.4.0
|
121 |
+
- Tokenizers 0.12.1
|