File size: 3,841 Bytes
6cc4ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: twitter-roberta-base-dec2021-WNUT
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wnut_17
      type: wnut_17
      args: wnut_17
    metrics:
    - name: Precision
      type: precision
      value: 0.70703125
    - name: Recall
      type: recall
      value: 0.6495215311004785
    - name: F1
      type: f1
      value: 0.6770573566084789
    - name: Accuracy
      type: accuracy
      value: 0.9649780715693129
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# twitter-roberta-base-dec2021-WNUT

This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2086
- Precision: 0.7070
- Recall: 0.6495
- F1: 0.6771
- Accuracy: 0.9650

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 1024
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.46  | 25   | 0.2818          | 0.0982    | 0.0383 | 0.0551 | 0.9241   |
| No log        | 0.93  | 50   | 0.2158          | 0.6181    | 0.4569 | 0.5254 | 0.9480   |
| No log        | 1.39  | 75   | 0.1930          | 0.6682    | 0.5347 | 0.5940 | 0.9555   |
| No log        | 1.85  | 100  | 0.1728          | 0.6583    | 0.5646 | 0.6079 | 0.9594   |
| No log        | 2.31  | 125  | 0.1787          | 0.7050    | 0.5718 | 0.6314 | 0.9619   |
| No log        | 2.78  | 150  | 0.2051          | 0.6979    | 0.5251 | 0.5993 | 0.9587   |
| No log        | 3.24  | 175  | 0.1755          | 0.7172    | 0.5945 | 0.6501 | 0.9621   |
| No log        | 3.7   | 200  | 0.1720          | 0.6943    | 0.6304 | 0.6608 | 0.9645   |
| No log        | 4.17  | 225  | 0.1873          | 0.7203    | 0.6316 | 0.6730 | 0.9646   |
| No log        | 4.63  | 250  | 0.1781          | 0.6934    | 0.6196 | 0.6545 | 0.9638   |
| No log        | 5.09  | 275  | 0.1953          | 0.7040    | 0.6172 | 0.6577 | 0.9631   |
| No log        | 5.56  | 300  | 0.1953          | 0.7223    | 0.6316 | 0.6739 | 0.9642   |
| No log        | 6.02  | 325  | 0.1839          | 0.7008    | 0.6471 | 0.6729 | 0.9648   |
| No log        | 6.48  | 350  | 0.1995          | 0.716     | 0.6423 | 0.6772 | 0.9650   |
| No log        | 6.94  | 375  | 0.2056          | 0.7251    | 0.6184 | 0.6675 | 0.9640   |
| No log        | 7.41  | 400  | 0.2044          | 0.7065    | 0.6220 | 0.6616 | 0.9640   |
| No log        | 7.87  | 425  | 0.2042          | 0.7201    | 0.6400 | 0.6776 | 0.9650   |
| No log        | 8.33  | 450  | 0.2247          | 0.7280    | 0.6244 | 0.6722 | 0.9638   |
| No log        | 8.8   | 475  | 0.2060          | 0.7064    | 0.6447 | 0.6742 | 0.9649   |
| 0.0675        | 9.26  | 500  | 0.2152          | 0.7112    | 0.6244 | 0.6650 | 0.9643   |
| 0.0675        | 9.72  | 525  | 0.2086          | 0.7070    | 0.6495 | 0.6771 | 0.9650   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1