--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_main_raid results: [] --- # fine_tuned_main_raid This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Accuracy: 0.9931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3359 | 0.1018 | 100 | 0.1977 | 0.9703 | | 0.17 | 0.2037 | 200 | 0.3161 | 0.9542 | | 0.1525 | 0.3055 | 300 | 0.0936 | 0.9828 | | 0.0874 | 0.4073 | 400 | 0.0900 | 0.9863 | | 0.097 | 0.5092 | 500 | 0.0992 | 0.9863 | | 0.0874 | 0.6110 | 600 | 0.1275 | 0.9851 | | 0.0763 | 0.7128 | 700 | 0.1173 | 0.9840 | | 0.1067 | 0.8147 | 800 | 0.0585 | 0.9874 | | 0.0646 | 0.9165 | 900 | 0.0358 | 0.9943 | | 0.0338 | 1.0183 | 1000 | 0.0413 | 0.9943 | | 0.0463 | 1.1202 | 1100 | 0.0311 | 0.9943 | | 0.0683 | 1.2220 | 1200 | 0.0473 | 0.9920 | | 0.0315 | 1.3238 | 1300 | 0.0374 | 0.9931 | | 0.0251 | 1.4257 | 1400 | 0.0335 | 0.9954 | | 0.0238 | 1.5275 | 1500 | 0.0481 | 0.9931 | | 0.0105 | 1.6293 | 1600 | 0.0555 | 0.9931 | | 0.063 | 1.7312 | 1700 | 0.0343 | 0.9931 | | 0.0389 | 1.8330 | 1800 | 0.0355 | 0.9931 | | 0.0463 | 1.9348 | 1900 | 0.0584 | 0.9897 | | 0.0075 | 2.0367 | 2000 | 0.0284 | 0.9931 | | 0.0036 | 2.1385 | 2100 | 0.1225 | 0.9760 | | 0.0062 | 2.2403 | 2200 | 0.0333 | 0.9943 | | 0.0136 | 2.3422 | 2300 | 0.0379 | 0.9920 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3