|
|
|
from typing import Union |
|
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast |
|
Tokenizer = Union[(PreTrainedTokenizer, PreTrainedTokenizerFast)] |
|
NUM_SENTINEL_TOKENS: int = 100 |
|
|
|
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer): |
|
'Adds sentinel tokens and padding token (if missing).\n\n Expands the tokenizer vocabulary to include sentinel tokens\n used in mixture-of-denoiser tasks as well as a padding token.\n\n All added tokens are added as special tokens. No tokens are\n added if sentinel tokens and padding token already exist.\n ' |
|
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)] |
|
tokenizer.add_tokens(sentinels_to_add, special_tokens=True) |
|
if (tokenizer.pad_token is None): |
|
tokenizer.add_tokens('<pad>', special_tokens=True) |
|
tokenizer.pad_token = '<pad>' |
|
assert (tokenizer.pad_token_id is not None) |
|
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]) |
|
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids |
|
tokenizer.sentinel_token_ids = _sentinel_token_ids |
|
|
|
class AutoTokenizerForMOD(AutoTokenizer): |
|
'AutoTokenizer + Adaptation for MOD.\n\n A simple wrapper around AutoTokenizer to make instantiating\n an MOD-adapted tokenizer a bit easier.\n\n MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),\n a padding token, and a property to get the token ids of the\n sentinel tokens.\n ' |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
'See `AutoTokenizer.from_pretrained` docstring.' |
|
tokenizer = super().from_pretrained(*args, **kwargs) |
|
adapt_tokenizer_for_denoising(tokenizer) |
|
return tokenizer |
|
|