File size: 4,862 Bytes
22f8f5b
6d4c56b
22f8f5b
6d4c56b
 
 
22f8f5b
6d4c56b
 
 
22f8f5b
 
6d4c56b
 
22f8f5b
6d4c56b
 
22f8f5b
6d4c56b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f8f5b
 
 
 
6d4c56b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model-index:
- name: empower-functions-llama3-70b-parallel-all-linear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
adapter: qlora
base_model: meta-llama/Meta-Llama-3-70B-Instruct
bf16: auto
datasets:
- conversation: llama-3
  path: a265546be8c24d59bfdc6ba69431b635/./data/with_function_response/original_clean/function_used_training_shuffled.jsonl
  type: sharegpt
- conversation: llama-3
  path: a265546be8c24d59bfdc6ba69431b635/./data/with_function_response/original_clean/function_not_used_training.jsonl
  type: sharegpt
- conversation: llama-3
  path: a265546be8c24d59bfdc6ba69431b635/./data/with_function_response/parallel_call/parallel_data_training.jsonl
  type: sharegpt
debug: null
deepspeed: null
early_stopping_patience: null
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp:
- full_shard
- auto_wrap
fsdp_config:
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_cpu_ram_efficient_loading: true
  fsdp_limit_all_gathers: true
  fsdp_offload_params: true
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sync_module_states: true
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_use_orig_params: false
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
group_by_length: false
hub_model_id: liuylhf/empower-functions-llama3-70b-parallel-all-linear
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: a265546be8c24d59bfdc6ba69431b635/model
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 10
sequence_len: 4096
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# empower-functions-llama3-70b-parallel-all-linear

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0436

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0962        | 0.0067 | 1    | 2.0635          |
| 0.0715        | 0.2492 | 37   | 0.0770          |
| 0.0556        | 0.4983 | 74   | 0.0600          |
| 0.0559        | 0.7475 | 111  | 0.0549          |
| 0.0542        | 0.9966 | 148  | 0.0523          |
| 0.0439        | 1.2256 | 185  | 0.0505          |
| 0.0484        | 1.4747 | 222  | 0.0496          |
| 0.043         | 1.7239 | 259  | 0.0477          |
| 0.0467        | 1.9731 | 296  | 0.0464          |
| 0.0406        | 2.2020 | 333  | 0.0462          |
| 0.0424        | 2.4512 | 370  | 0.0453          |
| 0.0378        | 2.7003 | 407  | 0.0443          |
| 0.0382        | 2.9495 | 444  | 0.0435          |
| 0.0352        | 3.1785 | 481  | 0.0439          |
| 0.0328        | 3.4276 | 518  | 0.0438          |
| 0.0329        | 3.6768 | 555  | 0.0437          |
| 0.0378        | 3.9259 | 592  | 0.0436          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.19.1