File size: 7,142 Bytes
571fb44
84be0ca
 
b5a4774
571fb44
84be0ca
 
 
 
 
571fb44
 
b5a4774
84be0ca
b5a4774
 
 
 
 
571fb44
 
 
 
 
84be0ca
571fb44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
language:
- tr
license: apache-2.0
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- nli_tr
metrics:
- accuracy
pipeline_tag: zero-shot-classification
widget:
- text: Dolar yükselmeye devam ediyor.
  candidate_labels: ekonomi, siyaset, spor
- text: Senaryo çok saçmaydı, beğendim diyemem.
  candidate_labels: olumlu, olumsuz
base_model: dbmdz/convbert-base-turkish-mc4-cased
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convbert-base-turkish-mc4-cased_allnli_tr

This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-cased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5541
- Accuracy: 0.8111

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7338        | 0.03  | 1000  | 0.6722          | 0.7236   |
| 0.603         | 0.07  | 2000  | 0.6465          | 0.7399   |
| 0.5605        | 0.1   | 3000  | 0.5801          | 0.7728   |
| 0.55          | 0.14  | 4000  | 0.5994          | 0.7626   |
| 0.529         | 0.17  | 5000  | 0.5720          | 0.7697   |
| 0.5196        | 0.2   | 6000  | 0.5692          | 0.7769   |
| 0.5117        | 0.24  | 7000  | 0.5725          | 0.7785   |
| 0.5044        | 0.27  | 8000  | 0.5532          | 0.7787   |
| 0.5016        | 0.31  | 9000  | 0.5546          | 0.7812   |
| 0.5031        | 0.34  | 10000 | 0.5461          | 0.7870   |
| 0.4949        | 0.37  | 11000 | 0.5725          | 0.7826   |
| 0.4894        | 0.41  | 12000 | 0.5419          | 0.7933   |
| 0.4796        | 0.44  | 13000 | 0.5278          | 0.7914   |
| 0.4795        | 0.48  | 14000 | 0.5193          | 0.7953   |
| 0.4713        | 0.51  | 15000 | 0.5534          | 0.7771   |
| 0.4738        | 0.54  | 16000 | 0.5098          | 0.8039   |
| 0.481         | 0.58  | 17000 | 0.5244          | 0.7958   |
| 0.4634        | 0.61  | 18000 | 0.5215          | 0.7972   |
| 0.465         | 0.65  | 19000 | 0.5129          | 0.7985   |
| 0.4624        | 0.68  | 20000 | 0.5062          | 0.8047   |
| 0.4597        | 0.71  | 21000 | 0.5114          | 0.8029   |
| 0.4571        | 0.75  | 22000 | 0.5070          | 0.8073   |
| 0.4602        | 0.78  | 23000 | 0.5115          | 0.7993   |
| 0.4552        | 0.82  | 24000 | 0.5085          | 0.8052   |
| 0.4538        | 0.85  | 25000 | 0.5118          | 0.7974   |
| 0.4517        | 0.88  | 26000 | 0.5036          | 0.8044   |
| 0.4517        | 0.92  | 27000 | 0.4930          | 0.8062   |
| 0.4413        | 0.95  | 28000 | 0.5307          | 0.7964   |
| 0.4483        | 0.99  | 29000 | 0.5195          | 0.7938   |
| 0.4036        | 1.02  | 30000 | 0.5238          | 0.8029   |
| 0.3724        | 1.05  | 31000 | 0.5125          | 0.8082   |
| 0.3777        | 1.09  | 32000 | 0.5099          | 0.8075   |
| 0.3753        | 1.12  | 33000 | 0.5172          | 0.8053   |
| 0.367         | 1.15  | 34000 | 0.5188          | 0.8053   |
| 0.3819        | 1.19  | 35000 | 0.5218          | 0.8046   |
| 0.363         | 1.22  | 36000 | 0.5202          | 0.7993   |
| 0.3794        | 1.26  | 37000 | 0.5240          | 0.8048   |
| 0.3749        | 1.29  | 38000 | 0.5026          | 0.8054   |
| 0.367         | 1.32  | 39000 | 0.5198          | 0.8075   |
| 0.3759        | 1.36  | 40000 | 0.5298          | 0.7993   |
| 0.3701        | 1.39  | 41000 | 0.5072          | 0.8091   |
| 0.3742        | 1.43  | 42000 | 0.5071          | 0.8098   |
| 0.3706        | 1.46  | 43000 | 0.5317          | 0.8037   |
| 0.3716        | 1.49  | 44000 | 0.5034          | 0.8052   |
| 0.3717        | 1.53  | 45000 | 0.5258          | 0.8012   |
| 0.3714        | 1.56  | 46000 | 0.5195          | 0.8050   |
| 0.3781        | 1.6   | 47000 | 0.5004          | 0.8104   |
| 0.3725        | 1.63  | 48000 | 0.5124          | 0.8113   |
| 0.3624        | 1.66  | 49000 | 0.5040          | 0.8094   |
| 0.3657        | 1.7   | 50000 | 0.4979          | 0.8111   |
| 0.3669        | 1.73  | 51000 | 0.4968          | 0.8100   |
| 0.3636        | 1.77  | 52000 | 0.5075          | 0.8079   |
| 0.36          | 1.8   | 53000 | 0.4985          | 0.8110   |
| 0.3624        | 1.83  | 54000 | 0.5125          | 0.8070   |
| 0.366         | 1.87  | 55000 | 0.4918          | 0.8117   |
| 0.3655        | 1.9   | 56000 | 0.5051          | 0.8109   |
| 0.3609        | 1.94  | 57000 | 0.5083          | 0.8105   |
| 0.3672        | 1.97  | 58000 | 0.5129          | 0.8085   |
| 0.3545        | 2.0   | 59000 | 0.5467          | 0.8109   |
| 0.2938        | 2.04  | 60000 | 0.5635          | 0.8049   |
| 0.29          | 2.07  | 61000 | 0.5781          | 0.8041   |
| 0.2992        | 2.11  | 62000 | 0.5470          | 0.8077   |
| 0.2957        | 2.14  | 63000 | 0.5765          | 0.8073   |
| 0.292         | 2.17  | 64000 | 0.5472          | 0.8106   |
| 0.2893        | 2.21  | 65000 | 0.5590          | 0.8085   |
| 0.2883        | 2.24  | 66000 | 0.5535          | 0.8064   |
| 0.2923        | 2.28  | 67000 | 0.5508          | 0.8095   |
| 0.2868        | 2.31  | 68000 | 0.5679          | 0.8098   |
| 0.2892        | 2.34  | 69000 | 0.5660          | 0.8057   |
| 0.292         | 2.38  | 70000 | 0.5494          | 0.8088   |
| 0.286         | 2.41  | 71000 | 0.5653          | 0.8085   |
| 0.2939        | 2.45  | 72000 | 0.5673          | 0.8070   |
| 0.286         | 2.48  | 73000 | 0.5600          | 0.8092   |
| 0.2844        | 2.51  | 74000 | 0.5508          | 0.8095   |
| 0.2913        | 2.55  | 75000 | 0.5645          | 0.8088   |
| 0.2859        | 2.58  | 76000 | 0.5677          | 0.8095   |
| 0.2892        | 2.62  | 77000 | 0.5598          | 0.8113   |
| 0.2898        | 2.65  | 78000 | 0.5618          | 0.8096   |
| 0.2814        | 2.68  | 79000 | 0.5664          | 0.8103   |
| 0.2917        | 2.72  | 80000 | 0.5484          | 0.8122   |
| 0.2907        | 2.75  | 81000 | 0.5522          | 0.8116   |
| 0.2896        | 2.79  | 82000 | 0.5540          | 0.8093   |
| 0.2907        | 2.82  | 83000 | 0.5469          | 0.8104   |
| 0.2882        | 2.85  | 84000 | 0.5471          | 0.8122   |
| 0.2878        | 2.89  | 85000 | 0.5532          | 0.8108   |
| 0.2858        | 2.92  | 86000 | 0.5511          | 0.8115   |
| 0.288         | 2.96  | 87000 | 0.5491          | 0.8111   |
| 0.2834        | 2.99  | 88000 | 0.5541          | 0.8111   |


### Framework versions

- Transformers 4.12.3
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3