Training complete
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
value: 0.9508582968697409
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
- Recall: 0.9509
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
-
- Pytorch 2.
|
91 |
-
- Datasets 2.
|
92 |
- Tokenizers 0.19.1
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.935275616619765
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
value: 0.9508582968697409
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9430025869982476
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9868281627126626
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0595
|
48 |
+
- Precision: 0.9353
|
49 |
- Recall: 0.9509
|
50 |
+
- F1: 0.9430
|
51 |
+
- Accuracy: 0.9868
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0793 | 1.0 | 1756 | 0.0648 | 0.9069 | 0.9360 | 0.9212 | 0.9825 |
|
83 |
+
| 0.0352 | 2.0 | 3512 | 0.0645 | 0.9320 | 0.9458 | 0.9389 | 0.9850 |
|
84 |
+
| 0.0205 | 3.0 | 5268 | 0.0595 | 0.9353 | 0.9509 | 0.9430 | 0.9868 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
+
- Transformers 4.41.2
|
90 |
+
- Pytorch 2.3.0+cu121
|
91 |
+
- Datasets 2.20.0
|
92 |
- Tokenizers 0.19.1
|