enkidu731 commited on
Commit
55db65f
1 Parent(s): 2a2fbdd

Training complete

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9358953122411794
29
  - name: Recall
30
  type: recall
31
  value: 0.9508582968697409
32
  - name: F1
33
  type: f1
34
- value: 0.9433174722430921
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9867104256195914
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0602
48
- - Precision: 0.9359
49
  - Recall: 0.9509
50
- - F1: 0.9433
51
- - Accuracy: 0.9867
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.073 | 1.0 | 1756 | 0.0651 | 0.9098 | 0.9354 | 0.9224 | 0.9813 |
83
- | 0.034 | 2.0 | 3512 | 0.0602 | 0.9353 | 0.9483 | 0.9418 | 0.9866 |
84
- | 0.0231 | 3.0 | 5268 | 0.0602 | 0.9359 | 0.9509 | 0.9433 | 0.9867 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.40.2
90
- - Pytorch 2.2.1+cu121
91
- - Datasets 2.19.1
92
  - Tokenizers 0.19.1
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.935275616619765
29
  - name: Recall
30
  type: recall
31
  value: 0.9508582968697409
32
  - name: F1
33
  type: f1
34
+ value: 0.9430025869982476
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9868281627126626
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0595
48
+ - Precision: 0.9353
49
  - Recall: 0.9509
50
+ - F1: 0.9430
51
+ - Accuracy: 0.9868
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0793 | 1.0 | 1756 | 0.0648 | 0.9069 | 0.9360 | 0.9212 | 0.9825 |
83
+ | 0.0352 | 2.0 | 3512 | 0.0645 | 0.9320 | 0.9458 | 0.9389 | 0.9850 |
84
+ | 0.0205 | 3.0 | 5268 | 0.0595 | 0.9353 | 0.9509 | 0.9430 | 0.9868 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.41.2
90
+ - Pytorch 2.3.0+cu121
91
+ - Datasets 2.20.0
92
  - Tokenizers 0.19.1