--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: "" split: None args: 'config: sv-SE, split: test' metrics: - name: Wer type: wer value: 51.31886746793579 --- # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0765 - Wer: 51.3189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.5005 | 1.29 | 1000 | 1.7517 | 84.8861 | | 0.8752 | 2.59 | 2000 | 1.2958 | 68.8688 | | 0.4382 | 3.88 | 3000 | 1.1835 | 60.4152 | | 0.0694 | 5.17 | 4000 | 1.1659 | 55.8442 | | 0.0091 | 6.47 | 5000 | 1.0765 | 51.3189 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2