enoriega commited on
Commit
3c6df44
1 Parent(s): 9986b96

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - keyword_pubmed_dataset
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: kw_pubmed_1000_0.0003
11
+ results:
12
+ - task:
13
+ name: Masked Language Modeling
14
+ type: fill-mask
15
+ dataset:
16
+ name: keyword_pubmed_dataset
17
+ type: keyword_pubmed_dataset
18
+ args: sentence
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.33938523162661094
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # kw_pubmed_1000_0.0003
29
+
30
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the keyword_pubmed_dataset dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 4.7086
33
+ - Accuracy: 0.3394
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0003
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 32
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 250
57
+ - total_train_batch_size: 8000
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | No log | 0.09 | 4 | 4.3723 | 0.3436 |
68
+ | 6.0386 | 0.17 | 8 | 4.2113 | 0.3442 |
69
+ | 3.7573 | 0.26 | 12 | 4.2079 | 0.3634 |
70
+ | 2.9944 | 0.35 | 16 | 4.3370 | 0.3513 |
71
+ | 2.7048 | 0.44 | 20 | 4.8594 | 0.3067 |
72
+ | 2.7048 | 0.52 | 24 | 4.4929 | 0.3383 |
73
+ | 2.9458 | 0.61 | 28 | 4.5146 | 0.3408 |
74
+ | 2.3783 | 0.7 | 32 | 4.5680 | 0.3430 |
75
+ | 2.2485 | 0.78 | 36 | 4.5095 | 0.3477 |
76
+ | 2.1701 | 0.87 | 40 | 4.4971 | 0.3449 |
77
+ | 2.1701 | 0.96 | 44 | 4.7051 | 0.3321 |
78
+ | 2.0861 | 1.07 | 48 | 4.7615 | 0.3310 |
79
+ | 2.4168 | 1.15 | 52 | 4.7086 | 0.3394 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.18.0
85
+ - Pytorch 1.11.0
86
+ - Datasets 2.1.0
87
+ - Tokenizers 0.12.1