update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- keyword_pubmed_dataset
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: kw_pubmed_1000_0.0003
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Masked Language Modeling
|
14 |
+
type: fill-mask
|
15 |
+
dataset:
|
16 |
+
name: keyword_pubmed_dataset
|
17 |
+
type: keyword_pubmed_dataset
|
18 |
+
args: sentence
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.33938523162661094
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# kw_pubmed_1000_0.0003
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the keyword_pubmed_dataset dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 4.7086
|
33 |
+
- Accuracy: 0.3394
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 0.0003
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 250
|
57 |
+
- total_train_batch_size: 8000
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| No log | 0.09 | 4 | 4.3723 | 0.3436 |
|
68 |
+
| 6.0386 | 0.17 | 8 | 4.2113 | 0.3442 |
|
69 |
+
| 3.7573 | 0.26 | 12 | 4.2079 | 0.3634 |
|
70 |
+
| 2.9944 | 0.35 | 16 | 4.3370 | 0.3513 |
|
71 |
+
| 2.7048 | 0.44 | 20 | 4.8594 | 0.3067 |
|
72 |
+
| 2.7048 | 0.52 | 24 | 4.4929 | 0.3383 |
|
73 |
+
| 2.9458 | 0.61 | 28 | 4.5146 | 0.3408 |
|
74 |
+
| 2.3783 | 0.7 | 32 | 4.5680 | 0.3430 |
|
75 |
+
| 2.2485 | 0.78 | 36 | 4.5095 | 0.3477 |
|
76 |
+
| 2.1701 | 0.87 | 40 | 4.4971 | 0.3449 |
|
77 |
+
| 2.1701 | 0.96 | 44 | 4.7051 | 0.3321 |
|
78 |
+
| 2.0861 | 1.07 | 48 | 4.7615 | 0.3310 |
|
79 |
+
| 2.4168 | 1.15 | 52 | 4.7086 | 0.3394 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.18.0
|
85 |
+
- Pytorch 1.11.0
|
86 |
+
- Datasets 2.1.0
|
87 |
+
- Tokenizers 0.12.1
|